import torch import pytest from functools import partial import torch.multiprocessing as mp import torch.distributed as dist import colossalai from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from colossalai.tensor import ComputePattern, ComputeSpec, ColoTensor, ShardSpec, ProcessGroup, ColoTensorSpec from colossalai.utils.checkpoint.utils import gather_tensor, scatter_tensor from tests.test_tensor.common_utils import tensor_shard_equal def run_dist(rank, world_size, port, dp_degree, tp_degree): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') pg = ProcessGroup(dp_degree=dp_degree, tp_degree=tp_degree) x = torch.randn(4, 4) param = ColoTensor(torch.nn.Parameter(x), spec=ColoTensorSpec(pg)) spec = ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D) param.set_tensor_spec(*spec) gather_tensor(param) if dist.get_rank() == 0: assert torch.all(x == param) else: assert tensor_shard_equal(x, param.data, pg.tp_local_rank(), pg.tp_world_size()) dist.barrier() scatter_tensor(param, spec[0]) assert tensor_shard_equal(x, param.data, pg.tp_local_rank(), pg.tp_world_size()) assert param.requires_grad is True dist.barrier() @pytest.mark.dist @pytest.mark.parametrize('world_size', [4]) @rerun_if_address_is_in_use() def test_checkpoint(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port(), dp_degree=2, tp_degree=world_size // 2) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_checkpoint(world_size=4)