import argparse from copy import deepcopy import pandas as pd import torch from coati.trainer import PPOTrainer from coati.ray.src.experience_maker_holder import ExperienceMakerHolder from coati.ray.src.detached_trainer_ppo import DetachedPPOTrainer from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy from coati.experience_maker import NaiveExperienceMaker from torch.optim import Adam from transformers import AutoTokenizer, BloomTokenizerFast from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer from colossalai.nn.optimizer import HybridAdam import ray import os import socket def get_free_port(): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(('', 0)) return s.getsockname()[1] def get_local_ip(): with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s: s.connect(('8.8.8.8', 80)) return s.getsockname()[0] def main(args): master_addr = str(get_local_ip()) # trainer_env_info trainer_port = str(get_free_port()) env_info_trainer_1 = {'local_rank' : '0', 'rank' : '0', 'world_size' : '2', 'master_port' : trainer_port, 'master_addr' : master_addr} env_info_trainer_2 = {'local_rank' : '0', 'rank' : '1', 'world_size' : '2', 'master_port' : trainer_port, 'master_addr' : master_addr} # maker_env_info maker_port = str(get_free_port()) env_info_maker_1 = {'local_rank' : '0', 'rank' : '0', 'world_size' : '2', 'master_port' : maker_port, 'master_addr' : master_addr} env_info_maker_2 = {'local_rank' : '0', 'rank' : '1', 'world_size' : '2', 'master_port': maker_port, 'master_addr' : master_addr} print([env_info_trainer_1, env_info_trainer_2, env_info_maker_1, env_info_maker_2]) ray.init() # configure tokenizer if args.model == 'gpt2': tokenizer = GPT2Tokenizer.from_pretrained('gpt2') tokenizer.pad_token = tokenizer.eos_token elif args.model == 'bloom': tokenizer = BloomTokenizerFast.from_pretrained(args.pretrain) tokenizer.pad_token = tokenizer.eos_token elif args.model == 'opt': tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") else: raise ValueError(f'Unsupported model "{args.model}"') # configure Trainer trainer_1_ref = DetachedPPOTrainer.options(name="trainer1", namespace=os.environ["RAY_NAMESPACE"], num_gpus=1, max_concurrency=2).remote( experience_maker_holder_name_list=["maker1", "maker2"], strategy=args.trainer_strategy, model=args.model, env_info=env_info_trainer_1, pretrained=args.pretrain, lora_rank=args.lora_rank, train_batch_size=args.train_batch_size, buffer_limit=16, experience_batch_size=args.experience_batch_size, max_epochs=args.max_epochs, #kwargs: max_length=128, do_sample=True, temperature=1.0, top_k=50, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, debug=args.debug, ) trainer_2_ref = DetachedPPOTrainer.options(name="trainer2", namespace=os.environ["RAY_NAMESPACE"], num_gpus=1, max_concurrency=2).remote( experience_maker_holder_name_list=["maker1", "maker2"], strategy=args.trainer_strategy, model=args.model, env_info=env_info_trainer_2, pretrained=args.pretrain, lora_rank=args.lora_rank, train_batch_size=args.train_batch_size, buffer_limit=16, experience_batch_size=args.experience_batch_size, max_epochs=args.max_epochs, #kwargs: max_length=128, do_sample=True, temperature=1.0, top_k=50, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, debug=args.debug, ) # configure Experience Maker experience_holder_1_ref = ExperienceMakerHolder.options(name="maker1", namespace=os.environ["RAY_NAMESPACE"], num_gpus=1, max_concurrency=2).remote( detached_trainer_name_list=["trainer1", "trainer2"], strategy=args.maker_strategy, env_info=env_info_maker_1, experience_batch_size=args.experience_batch_size, kl_coef=0.1, #kwargs: max_length=128, do_sample=True, temperature=1.0, top_k=50, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, debug=args.debug, ) experience_holder_2_ref = ExperienceMakerHolder.options(name="maker2", namespace=os.environ["RAY_NAMESPACE"], num_gpus=1, max_concurrency=2).remote( detached_trainer_name_list=["trainer1", "trainer2"], strategy=args.maker_strategy, env_info=env_info_maker_2, experience_batch_size=args.experience_batch_size, kl_coef=0.1, #kwargs: max_length=128, do_sample=True, temperature=1.0, top_k=50, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, debug=args.debug, ) # trainer send its actor and critic to experience holders. # TODO: balance duty ray.get(trainer_1_ref.initialize_remote_makers.remote()) # configure sampler dataset = pd.read_csv(args.prompt_path)['prompt'] def tokenize_fn(texts): # MUST padding to max length to ensure inputs of all ranks have the same length # Different length may lead to hang when using gemini, as different generation steps batch = tokenizer(texts, return_tensors='pt', max_length=96, padding='max_length', truncation=True) return {k: v.cuda() for k, v in batch.items()} trainer_1_done_ref = trainer_1_ref.fit.remote(num_episodes=args.num_episodes, max_timesteps=args.max_timesteps, update_timesteps=args.update_timesteps) trainer_2_done_ref = trainer_2_ref.fit.remote(num_episodes=args.num_episodes, max_timesteps=args.max_timesteps, update_timesteps=args.update_timesteps) num_exp_per_maker = args.num_episodes * args.max_timesteps // args.update_timesteps * args.max_epochs + 3 # +3 for fault tolerance maker_1_done_ref = experience_holder_1_ref.workingloop.remote(dataset, tokenize_fn, times=num_exp_per_maker) maker_2_done_ref = experience_holder_2_ref.workingloop.remote(dataset, tokenize_fn, times=num_exp_per_maker) ray.get([trainer_1_done_ref, trainer_2_done_ref, maker_1_done_ref, maker_2_done_ref]) # save model checkpoint after fitting trainer_1_ref.strategy_save_actor.remote(args.save_path, only_rank0=True) trainer_2_ref.strategy_save_actor.remote(args.save_path, only_rank0=True) # save optimizer checkpoint on all ranks if args.need_optim_ckpt: trainer_1_ref.strategy_save_actor_optim.remote('actor_optim_checkpoint_prompts_%d.pt' % (torch.cuda.current_device()), only_rank0=False) trainer_2_ref.strategy_save_actor_optim.remote('actor_optim_checkpoint_prompts_%d.pt' % (torch.cuda.current_device()), only_rank0=False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('prompt_path') parser.add_argument('--trainer_strategy', choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'], default='naive') parser.add_argument('--maker_strategy', choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'], default='naive') parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt']) parser.add_argument('--pretrain', type=str, default=None) parser.add_argument('--save_path', type=str, default='actor_checkpoint_prompts.pt') parser.add_argument('--need_optim_ckpt', type=bool, default=False) parser.add_argument('--num_episodes', type=int, default=10) parser.add_argument('--max_timesteps', type=int, default=10) parser.add_argument('--update_timesteps', type=int, default=10) parser.add_argument('--max_epochs', type=int, default=5) parser.add_argument('--train_batch_size', type=int, default=8) parser.add_argument('--experience_batch_size', type=int, default=8) parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank") parser.add_argument('--debug', action='store_true') args = parser.parse_args() main(args)