import torch from torch import nn from colossalai.pipeline.rpc._pipeline_schedule import OneFOneBPipelineEngine from colossalai.fx.passes.adding_split_node_pass import split_with_split_nodes_pass, balanced_split_pass from colossalai.fx import ColoTracer from rpc_test_utils import rpc_run, parse_args, MLP from functools import partial # global variable for model created batch_size = 16 dim = 10 def create_partition_module(pp_rank: int, stage_num: int, model, data_kwargs): model.eval() tracer = ColoTracer() meta_args = {k: v.to('meta') for k, v in data_kwargs.items()} graph = tracer.trace(root=model, meta_args=meta_args) gm = torch.fx.GraphModule(model, graph, model.__class__.__name__) annotated_model = balanced_split_pass(gm, stage_num) split_model, _ = split_with_split_nodes_pass(annotated_model, merge_output=True) return list(split_model.children())[pp_rank] def partition(data_kwargs: dict, pp_rank: int, chunk: int, stage_num: int): torch.manual_seed(1024) model = MLP(dim, stage_num * 3) partition = create_partition_module(pp_rank, stage_num, model, data_kwargs) return partition def run_master(args): torch.manual_seed(100) epoch = args.epoch device = args.device stage_num = args.world_size chunk = args.chunk num_microbatches = args.num_microbatches use_checkpoint = args.use_checkpoint input_sample = torch.randn((batch_size, dim), device=device) def data_gen(): x = torch.zeros((batch_size, dim)) kwargs = dict(x=x) return kwargs data_kwargs = data_gen() engine = OneFOneBPipelineEngine(partition_fn=partial(partition, data_kwargs), stage_num=stage_num, num_microbatches=num_microbatches, device=device, chunk=chunk, checkpoint=use_checkpoint) for _ in range(epoch): logits = engine.forward_backward({'x': input_sample}, forward_only=True) if __name__ == "__main__": args = parse_args() rpc_run(args, run_master)