import argparse import os import warnings import torch import torch.distributed as dist import torch.distributed.rpc as rpc import torch.multiprocessing as mp from colossalai import launch from colossalai.logging import disable_existing_loggers from colossalai.pipeline.pipeline_process_group import ppg from torch import nn from torch._C._distributed_rpc import _is_current_rpc_agent_set from torch.optim import SGD, Adam, Optimizer, RMSprop rpc_is_initialized = _is_current_rpc_agent_set def color_debug(text, prefix=' ', color='blue'): color = color.upper() print(getattr(Back, color), prefix, Style.RESET_ALL, text) class MLP(nn.Module): def __init__(self, dim: int, layers: int): super().__init__() self.layers = torch.nn.ModuleList() for _ in range(layers): self.layers.append(nn.Linear(dim, dim, bias=False)) def forward(self, x): for layer in self.layers: x = layer(x) return x class RpcTestModel(nn.Module): def __init__(self, stage_id, actual_stage_num, feat_num, h) -> None: super().__init__() self.rank = stage_id self.is_last_rank = stage_id == actual_stage_num - 1 self.linear_name = f'linear_{stage_id}' if stage_id == 0: linear = nn.Linear(feat_num, h) elif stage_id == actual_stage_num - 1: linear = nn.Linear(h, 1) else: linear = nn.Linear(h, h) setattr(self, self.linear_name, linear) def forward(self, x) -> torch.Tensor: linear: nn.Module = getattr(self, self.linear_name) out: torch.Tensor = linear(x) if self.is_last_rank: out = out.sum() return out def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--epoch', type=int, default=1) parser.add_argument('--world_size', type=int, default=2) parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--dp_degree', type=int, default=1) parser.add_argument('--tp_degree', type=int, default=1) parser.add_argument('--num_microbatches', type=int, default=2) parser.add_argument('--chunk', type=int, default=1) parser.add_argument('--use_checkpoint', action='store_true') parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'RMSprop'], default='SGD') parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda') parser.add_argument('--master_addr', type=str, default='localhost') parser.add_argument('--master_port', type=str, default='29020') parser.add_argument('--num_worker_threads', type=str, default=128) return parser.parse_args() def pg_parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--world_size', type=int, default=4) parser.add_argument('--dp_degree', type=int, default=2) parser.add_argument('--tp_degree', type=int, default=1) parser.add_argument('--chunk', type=int, default=1) parser.add_argument('--num_worker_threads', type=str, default=128) parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda') parser.add_argument('--master_addr', type=str, default='localhost') parser.add_argument('--master_port', type=str, default='29020') return parser.parse_args() def run_worker(rank, args, master_func): os.environ['MASTER_ADDR'] = args.master_addr os.environ['MASTER_PORT'] = args.master_port device = args.device world_size = args.world_size dp_degree = args.dp_degree tp_degree = args.tp_degree num_worker_threads = args.num_worker_threads host = args.master_addr port = args.master_port backend = 'nccl' if device == 'cuda' else 'gloo' disable_existing_loggers() launch(dict(), rank, world_size, host, int(port), backend, verbose=False) ppg.set_global_info(rank=rank, world_size=world_size, dp_degree=dp_degree, tp_degree=tp_degree, num_worker_threads=num_worker_threads, device=device) # in rpc mode, only rank 0 is needed to be coded if rank == 0: master_func(args) # barrier here if rpc_is_initialized(): rpc.shutdown() else: warnings.warn("RPC has not been initialized") def rpc_run(args, master_func): world_size = args.world_size assert args.num_microbatches >= args.world_size, "num_microbatches cannot be fewer than world_size!" mp.spawn(run_worker, args=(args, master_func), nprocs=world_size)