from typing import Optional, Tuple import torch def get_mistral_flash_attention_forward(): from transformers.models.mistral.modeling_mistral import MistralAttention, apply_rotary_pos_emb, repeat_kv from colossalai.nn.layer.colo_attention import AttnMaskType, ColoAttention def forward( self: MistralAttention, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() assert q_len % 4 == 0, "Flash Attention Error: The sequence length should be a multiple of 4." query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = ( self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) ) value_states = ( self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) ) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) me_input_shape = (bsz, q_len, self.num_heads, self.head_dim) query_states = query_states.transpose(1, 2).contiguous().view(*me_input_shape) key_states = key_states.transpose(1, 2).contiguous().view(*me_input_shape) value_states = value_states.transpose(1, 2).contiguous().view(*me_input_shape) flash_attention_mask = None attn_mask_type = AttnMaskType.causal if attention_mask != None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) flash_attention_mask = ~(attention_mask[:, :, -1].squeeze(1).to(torch.bool)).contiguous() attn_mask_type = AttnMaskType.paddedcausal attention = ColoAttention(embed_dim=self.hidden_size, num_heads=self.num_heads) attn_output = attention( query_states, key_states, value_states, attn_mask=flash_attention_mask, attn_mask_type=attn_mask_type ) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value return forward