import torch import torch.distributed as dist import torch.nn as nn from torch.testing import assert_close import colossalai from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row from colossalai.tensor.d_tensor import is_distributed_tensor from colossalai.testing import rerun_if_address_is_in_use, spawn def check_linear_1d_col(): linear = nn.Linear(32, 128).cuda() linear_col = Linear1D_Col.from_native_module(linear, process_group=None, gather_output=True) # ensure that the parameters are distributed assert is_distributed_tensor(linear_col.weight) assert is_distributed_tensor(linear_col.bias) # ensure the shape is correct assert linear_col.weight.shape == torch.Size([64, 32]) assert linear_col.bias.shape == torch.Size([64]) # ensure state dict is reversibly loadable linear.load_state_dict(linear_col.state_dict()) linear_col.load_state_dict(linear.state_dict()) # check computation correctness x = torch.rand(4, 32).cuda() x_for_unshard = x.expand_as(x.clone()) x_for_unshard.requires_grad_(True) x_for_shard = x.expand_as(x.clone()) x_for_shard.requires_grad_(True) out = linear(x_for_unshard) gather_out = linear_col(x_for_shard) assert_close(out, gather_out) # check backward correctness out.sum().backward() gather_out.sum().backward() rank = dist.get_rank() target_grad = torch.chunk(linear.weight.grad, 2, dim=0)[rank] assert_close(target_grad, linear_col.weight.grad) # check the input gradients assert x_for_shard.grad is not None assert x_for_unshard.grad is not None assert_close(x_for_unshard.grad, x_for_shard.grad) def check_linear_1d_row(): linear = nn.Linear(32, 128).cuda() linear_row = Linear1D_Row.from_native_module(linear, process_group=None, parallel_input=False) assert linear_row.weight.shape == torch.Size([128, 16]) assert linear_row.bias.shape == torch.Size([128]) # check computation correctness x = torch.rand(4, 32).cuda() x_for_unshard = x.expand_as(x.clone()) x_for_unshard.requires_grad_(True) x_for_shard = x.expand_as(x.clone()) x_for_shard.requires_grad_(True) # run forward out = linear(x_for_unshard) gather_out = linear_row(x_for_shard) assert_close(out, gather_out) # check backward correctness out.sum().backward() gather_out.sum().backward() rank = dist.get_rank() target_grad = torch.chunk(linear.weight.grad, 2, dim=1)[rank] assert_close(target_grad, linear_row.weight.grad) # check the input gradients assert x_for_shard.grad is not None assert x_for_unshard.grad is not None assert_close(x_for_unshard.grad, x_for_shard.grad) def check_linear_col_plus_row(): linear_1 = nn.Linear(32, 128).cuda() linear_2 = nn.Linear(128, 32).cuda() linear_col = Linear1D_Col.from_native_module(linear_1, process_group=None, gather_output=False) linear_row = Linear1D_Row.from_native_module(linear_2, process_group=None, parallel_input=True) # check computation correctness x = torch.rand(4, 32).cuda() x_for_unshard = x.expand_as(x.clone()) x_for_unshard.requires_grad_(True) x_for_shard = x.expand_as(x.clone()) x_for_shard.requires_grad_(True) # run forward unshard_out = linear_2(linear_1(x_for_unshard)) shard_out = linear_row(linear_col(x_for_shard)) assert_close(unshard_out, shard_out) # check backward correctness unshard_out.sum().backward() shard_out.sum().backward() rank = dist.get_rank() target_1_grad = torch.chunk(linear_1.weight.grad, 2, dim=0)[rank] assert_close(target_1_grad, linear_col.weight.grad) # check the input gradients assert x_for_shard.grad is not None assert x_for_unshard.grad is not None assert_close(x_for_unshard.grad, x_for_shard.grad) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') check_linear_1d_col() check_linear_1d_row() check_linear_col_plus_row() @rerun_if_address_is_in_use() def test_linear(): spawn(run_dist, nprocs=2) if __name__ == '__main__': test_linear()