import os import pytest import torch import torch.distributed as dist from utils import shared_tempdir import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin from colossalai.booster.plugin.gemini_plugin import GeminiCheckpointIO from colossalai.nn.optimizer import HybridAdam from colossalai.testing import check_state_dict_equal, parameterize, rerun_if_address_is_in_use, spawn from colossalai.zero import ZeroDDP from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration from colossalai.zero.gemini.gemini_mgr import GeminiManager from tests.kit.model_zoo import model_zoo @parameterize('placement_policy', ['cuda', 'cpu']) @parameterize('model_name', ['transformers_bert_for_sequence_classification']) @parameterize('use_safetensors', [False, True]) def exam_state_dict_with_origin(placement_policy, model_name, use_safetensors: bool): from transformers import BertForSequenceClassification (model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) bert_model = model_fn() with shared_tempdir() as tempdir: pretrained_path = os.path.join(tempdir, 'pretrained') bert_model.config.save_pretrained(save_directory=pretrained_path) # TODO(ver217): use boost api config_dict, *_ = search_chunk_configuration(bert_model, search_range_m=1, search_interval=100) chunk_manager = ChunkManager(config_dict) gemini_manager = GeminiManager(placement_policy, chunk_manager) bert_model = ZeroDDP(bert_model, gemini_manager) bert_model.train() ckpt_io = GeminiCheckpointIO() model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2 ckpt_io.save_model(bert_model, (pretrained_path), True, True, '', (model_size / 3), use_safetensors=use_safetensors) dist.barrier() new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path) check_state_dict_equal(bert_model.state_dict(only_rank_0=False, dtype=torch.float32), new_bert_model.state_dict(), False) @parameterize('placement_policy', ['cuda', 'cpu']) @parameterize('shard', [True, False]) @parameterize('model_name', ['transformers_gpt']) def exam_state_dict(placement_policy, shard: bool, model_name: str): (model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) criterion = lambda x: x.mean() plugin = GeminiPlugin(placement_policy=placement_policy) booster = Booster(plugin=plugin) model = model_fn() new_model = model_fn() optimizer = HybridAdam(model.parameters(), lr=0.001) model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) new_optimizer = HybridAdam(new_model.parameters(), lr=0.001) new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion) data = data_gen_fn() data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()} output = model(**data) output = output_transform_fn(output) output_key = list(output.keys())[0] loss = criterion(output[output_key]) booster.backward(loss, optimizer) optimizer.step() with shared_tempdir() as tempdir: model_ckpt_path = f"{tempdir}/model" optimizer_ckpt_path = f"{tempdir}/optimizer" booster.save_model(model, model_ckpt_path) if not shard: # TODO(ver217): optimizer checkpointing is not supported for sharded checkpoint booster.save_optimizer(optimizer, optimizer_ckpt_path) dist.barrier() booster.load_model(new_model, model_ckpt_path) check_state_dict_equal(model.unwrap().state_dict(only_rank_0=False), new_model.unwrap().state_dict(only_rank_0=False), False) if not shard: booster.load_optimizer(new_optimizer, optimizer_ckpt_path) check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict(), False) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_state_dict() exam_state_dict_with_origin() @pytest.mark.dist @pytest.mark.parametrize('world_size', [2]) @rerun_if_address_is_in_use() def test_gemini_ckpIO(world_size): spawn(run_dist, world_size)