from colossalai.shardformer.layer import FusedLayerNorm, Linear1D_Col, Linear1D_Row, VocabParallelEmbedding1D from .._utils import getattr_, setattr_ from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription __all__ = [ 'OPTPolicy', 'OPTModelPolicy', 'OPTForCausalLMPolicy', 'OPTForSequenceClassificationPolicy', 'OPTForQuestionAnsweringPolicy' ] class OPTPolicy(Policy): def config_sanity_check(self): pass def preprocess(self): # reshape the embedding layer r""" Reshape the Embedding layer to make the embedding dimension divisible by world_size """ vocab_size = self.model.config.vocab_size world_size = self.shard_config.tensor_parallel_size if vocab_size % world_size != 0: new_vocab_size = vocab_size + world_size - vocab_size % world_size self.model.resize_token_embeddings(new_vocab_size) return self.model def module_policy(self): from transformers.models.opt.modeling_opt import OPTAttention, OPTDecoder, OPTDecoderLayer policy = {} if self.shard_config.enable_tensor_parallelism: policy[OPTDecoder] = ModulePolicyDescription(sub_module_replacement=[ SubModuleReplacementDescription( suffix="embed_tokens", target_module=VocabParallelEmbedding1D, ) ]) policy[OPTDecoderLayer] = ModulePolicyDescription(sub_module_replacement=[ SubModuleReplacementDescription( suffix="fc1", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="fc2", target_module=Linear1D_Row, ) ]) policy[OPTAttention] = ModulePolicyDescription(attribute_replacement={ "embed_dim": self.model.config.hidden_size // self.shard_config.tensor_parallel_size, "num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size }, sub_module_replacement=[ SubModuleReplacementDescription( suffix="q_proj", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="k_proj", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="v_proj", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="out_proj", target_module=Linear1D_Row, ), ]) # optimization configuration if self.shard_config.enable_fused_normalization: self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription( suffix="final_layer_norm", target_module=FusedLayerNorm, ignore_if_not_exist=True), policy=policy, target_key=OPTDecoder) self.append_or_create_submodule_replacement(description=[ SubModuleReplacementDescription(suffix="self_attn_layer_norm", target_module=FusedLayerNorm, ignore_if_not_exist=True), SubModuleReplacementDescription(suffix="final_layer_norm", target_module=FusedLayerNorm, ignore_if_not_exist=True) ], policy=policy, target_key=OPTDecoderLayer) return policy def postprocess(self): return self.model class OPTModelPolicy(OPTPolicy): def __init__(self) -> None: super().__init__() class OPTForCausalLMPolicy(OPTPolicy): def module_policy(self): from transformers.models.opt.modeling_opt import OPTForCausalLM policy = super().module_policy() if self.shard_config.enable_tensor_parallelism: self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription( suffix="lm_head", target_module=Linear1D_Col, kwargs=dict(gather_output=True)), policy=policy, target_key=OPTForCausalLM) return policy def postprocess(self): binding_map = { 'model.decoder.embed_tokens': 'lm_head', } for k, v in binding_map.items(): src_mod = getattr_(self.model, k) dst_mod = getattr_(self.model, v) dst_mod.weight = src_mod.weight return self.model class OPTForSequenceClassificationPolicy(OPTPolicy): def __init__(self) -> None: super().__init__() class OPTForQuestionAnsweringPolicy(OPTPolicy): def __init__(self) -> None: super().__init__()