#!/usr/bin/env python # -*- encoding: utf-8 -*- import math from typing import Callable, List, Tuple, Union import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torch.distributed import ProcessGroup from torch.nn.parameter import Parameter from colossalai.nn import init as init from colossalai.nn.layer.utils import divide from colossalai.tensor.d_tensor import shard_colwise, shard_rowwise, sharded_tensor_to_param from ._operation import ( gather_forward_split_backward, linear_with_async_comm, reduce_forward, split_forward_gather_backward, ) from .parallel_module import ParallelModule from .utils import create_randomizer_with_offset __all__ = ['Linear1D_Col', 'Linear1D_Row'] class Linear1D_Col(ParallelModule): r"""Linear layer with column parallelism. The linear layer is defined as :math:`Y = XA + b`. A is parallelized along its second dimension as :math:`A = [A_1, ..., A_p]`. Args: in_features (int): size of each input sample. out_features (int): size of each output sample. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (`torch.dtype`): The dtype of parameters, defaults to None. device (`torch.device`): The device of parameters, defaults to None. process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None. gather_output (bool, optional): If true, call all-gather on output and make Y available to all GPUs, otherwise, every GPU will have its output which is :math:`Y_i = XA_i`, defaults to False skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion, defaults to False weight_initializer (`typing.Callable`): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (`typing.Callable`): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init `_. """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: torch.dtype = None, device: torch.device = None, process_group: ProcessGroup = None, gather_output: bool = False, skip_bias_add: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() # Keep input parameters self.in_features = in_features self.out_features = out_features self.gather_output = gather_output self.skip_bias_add = skip_bias_add self.device = device self.process_group = process_group if skip_bias_add and not bias: raise ValueError('cannot skip bias addition if bias is None') # Parameters. factory_kwargs = {'device': device, 'dtype': dtype} weight = torch.empty(self.out_features, self.in_features, **factory_kwargs) sharded_weight = shard_rowwise(weight, self.process_group) self.weight = sharded_tensor_to_param(sharded_weight) if bias: bias = torch.empty(self.out_features, **factory_kwargs) sharded_bias = shard_colwise(bias, self.process_group) self.bias = sharded_tensor_to_param(sharded_bias) else: self.bias = None # offset the seed with randomizer index and rank seed = torch.random.initial_seed() self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group) # init weights self.reset_parameters(weight_initializer, bias_initializer) @staticmethod def from_native_module(module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], *args, **kwargs) -> ParallelModule: r""" Convert a native PyTorch linear layer to a parallelized linear layer. """ # get the attributes in_features = module.in_features out_features = module.out_features bias = module.bias is not None device = module.weight.device # ensure only one process group is passed if isinstance(process_group, (list, tuple)): assert len(process_group) == 1, \ f'Expected only one process group, got {len(process_group)}.' process_group = process_group[0] linear_1d = Linear1D_Col(in_features=in_features, out_features=out_features, bias=bias, device=device, process_group=process_group, *args, **kwargs) with torch.no_grad(): # the weigh to the linear layer is a transpose # thus shard on row is equal to shard on column sharded_weight = shard_rowwise(module.weight.data, process_group) linear_1d.weight.data.copy_(sharded_weight) if bias: sharded_bias = shard_colwise(module.bias.data, process_group) linear_1d.bias.copy_(sharded_bias) return linear_1d def reset_parameters(self, weight_initializer, bias_initializer) -> None: with self.randomizer.fork_rng(enable_cpu=True): fan_in, fan_out = self.in_features, self.out_features weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]: assert input_.shape[-1] == self.weight.shape[-1], \ 'Invalid shapes in Linear1D_Col forward: input={}, weight={}. Expected last dim of input {}.'.format( input_.shape, self.weight.shape, self.weight.shape[-1]) # Set up backprop all-reduce. input_parallel = input_ # Matrix multiply. bias = self.bias if not self.skip_bias_add else None output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, True) if self.gather_output: # All-gather across the partitions. output = gather_forward_split_backward(output_parallel, dim=-1, process_group=self.process_group) else: output = output_parallel if self.skip_bias_add: return output, self.bias else: return output class Linear1D_Row(ParallelModule): r""" Linear layer with row parallelism Args: in_features (int): size of each input sample. out_features (int): size of each output sample. bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. dtype (`torch.dtype`): The dtype of parameters, defaults to None. parallel_input (bool): If set to ``True``, it's assumed that the input is split, defaults to False. skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion, defaults to False weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about ``initializer`` please refer to `init `_. """ def __init__(self, in_features: int, out_features: int, bias: bool = True, dtype: torch.dtype = None, device: torch.device = None, process_group: ProcessGroup = None, parallel_input: bool = True, skip_bias_add: bool = False, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), stream_chunk_num: int = 1): super().__init__() self.stream_chunk_num = stream_chunk_num # Keep input parameters self.in_features = in_features self.out_features = out_features self.parallel_input = parallel_input self.skip_bias_add = skip_bias_add self.process_group = process_group self.num_partitions = dist.get_world_size(self.process_group) if skip_bias_add and not bias: raise ValueError('cannot skip bias addition if bias is None') # Parameters. # Initialize weight. factory_kwargs = {'device': device, 'dtype': dtype} weight = torch.empty(self.out_features, self.in_features, **factory_kwargs) sharded_weight = shard_colwise(weight, self.process_group) self.weight = sharded_tensor_to_param(sharded_weight) if self.stream_chunk_num > 1: # TODO() work for inference only self.chunk_weight() if bias: self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs)) else: self.bias = None # offset the seed with randomizer index and rank seed = torch.random.initial_seed() self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group) with self.randomizer.fork_rng(enable_cpu=True): self.reset_parameters(weight_initializer, bias_initializer) @staticmethod def from_native_module(module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], *args, **kwargs) -> ParallelModule: r""" Convert a native PyTorch linear layer to a parallelized linear layer. """ # get the attributes in_features = module.in_features out_features = module.out_features bias = module.bias is not None device = module.weight.device # ensure only one process group is passed if isinstance(process_group, (list, tuple)): assert len(process_group) == 1, \ f'Expected only one process group, got {len(process_group)}.' process_group = process_group[0] linear_1d = Linear1D_Row(in_features=in_features, out_features=out_features, bias=bias, device=device, process_group=process_group, *args, **kwargs) # TODO: copy the sharded weights with torch.no_grad(): # the weigh to the linear layer is a transpose # thus shard on col is equal to shard on row sharded_weight = shard_colwise(module.weight.data, process_group) linear_1d.weight.data.copy_(sharded_weight) if bias: linear_1d.bias.copy_(module.bias.data) return linear_1d def chunk_weight(self): self.weight_list = torch.chunk(self.weight, self.stream_chunk_num, dim=0) @torch.no_grad() def reset_parameters(self, weight_initializer, bias_initializer) -> None: fan_in, fan_out = self.in_features, self.out_features weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) if self.process_group is None: src_rank = 0 else: src_rank = dist.distributed_c10d._get_global_rank(self.process_group, 0) origin_device = self.bias.device bias = self.bias.cuda() dist.broadcast(bias, src=src_rank, group=self.process_group) bias = bias.to(origin_device) self.bias.copy_(bias) def forward(self, input_: Tensor) -> Tensor: # Set up backprop all-reduce. if self.parallel_input: assert input_.shape[-1] == self.weight.shape[-1], \ 'Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.'.format( input_.shape, self.weight.shape, self.weight.shape[-1]) input_ = input_ else: assert divide(input_.shape[-1], self.num_partitions) == self.weight.shape[-1], \ 'Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.'.format( input_.shape, self.weight.shape, self.weight.shape[-1] * self.num_partitions) input_ = split_forward_gather_backward(input_, dim=-1, process_group=self.process_group) if self.stream_chunk_num > 1: if self.training: raise RuntimeError("use stream_chunk_num=1 in Linear1D_Row for training!") with torch.no_grad(): output_parallel_list = [None for i in range(self.stream_chunk_num)] handle_list = [] for i in range(self.stream_chunk_num): output_parallel_list[i] = F.linear(input_, self.weight_list[i]) handle = torch.distributed.all_reduce(output_parallel_list[i], group=self.process_group, async_op=True) handle_list.append(handle) # output_parallel_list[i] = reduce_input(output_parallel_list[i], ParallelMode.PARALLEL_1D) for handle in handle_list: handle.wait() output = torch.cat(output_parallel_list, dim=-1) else: output_parallel = F.linear(input_, self.weight) output = reduce_forward(output_parallel, self.process_group) if not self.skip_bias_add: if self.bias is not None: output = output + self.bias return output else: return output, self.bias