from typing import Any, Callable, List, Tuple import torch import torch.nn.functional as F from typing import Union from colossalai.gemini.stateful_tensor import StatefulTensor def get_gradient_predivide_factor(world_size: int) -> float: factor: int = 1 while world_size % factor == 0 and world_size / factor > factor: factor *= 2 return float(factor) def free_storage(data: torch.Tensor) -> None: """Free underlying storage of a Tensor.""" if data.storage().size() > 0: # Since we're modifying the Tensor's Storage directly, make sure the Tensor # is the sole occupant of the Storage. assert data.storage_offset() == 0 data.storage().resize_(0) @torch.no_grad() def alloc_storage(data: torch.Tensor, size: torch.Size) -> None: """Allocate storage for a tensor.""" if data.storage().size() == size.numel(): # no need to reallocate return assert data.storage().size() == 0 data.storage().resize_(size.numel()) def cast_tensor_to_fp16(tensor: torch.Tensor) -> torch.Tensor: if isinstance(tensor, StatefulTensor): tensor = tensor.payload if torch.is_floating_point(tensor) and tensor.dtype is torch.float32: return tensor.half() return tensor def cast_tensor_to_fp32(tensor: Union[torch.Tensor, StatefulTensor]) -> torch.Tensor: if isinstance(tensor, StatefulTensor): tensor = tensor.payload if torch.is_floating_point(tensor) and tensor.dtype is torch.float16: return tensor.float() return tensor def apply_to_tensors(x: Any, fn: Callable): if torch.is_tensor(x): return fn(x) elif isinstance(x, list): return [apply_to_tensors(t, fn) for t in x] elif isinstance(x, tuple): return tuple(apply_to_tensors(t, fn) for t in x) elif isinstance(x, dict): return {key: apply_to_tensors(val, fn) for key, val in x.items()} else: return x def cast_float_arguments(fn: Callable, *args: Any, **kwargs: Any) -> Tuple[Any, Any]: return apply_to_tensors(args, fn), apply_to_tensors(kwargs, fn) def chunk_and_pad(tensor: torch.Tensor, num_chunks: int) -> List[torch.Tensor]: """Chunk a given Tensor into num_chunks parts and add any necessary padding.""" chunks = list(torch.flatten(tensor).chunk(num_chunks)) # torch.chunk may return fewer than num_chunks chunks, pad accordingly. num_pad_for_partial_chunk = chunks[0].numel() - chunks[-1].numel() if num_pad_for_partial_chunk > 0: chunks[-1] = F.pad(chunks[-1], [0, num_pad_for_partial_chunk]) if len(chunks) < num_chunks: chunks.extend([torch.zeros_like(chunks[0]) for _ in range(num_chunks - len(chunks))]) return chunks