from colossalai import get_default_parser def parse_demo_args(): parser = get_default_parser() parser.add_argument( "--model_name_or_path", type=str, default="google/vit-base-patch16-224", help="Path to pretrained model or model identifier from huggingface.co/models." ) parser.add_argument( "--output_path", type=str, default="./output_model.bin", help="The path of your saved model after finetuning." ) parser.add_argument( "--plugin", type=str, default="gemini", help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'." ) parser.add_argument( "--num_epoch", type=int, default=3, help="Number of epochs." ) parser.add_argument( "--batch_size", type=int, default=32, help="Batch size (per dp group) for the training dataloader." ) parser.add_argument( "--learning_rate", type=float, default=3e-4, help="Initial learning rate (after the potential warmup period) to use." ) parser.add_argument( "--warmup_ratio", type=float, default=0.3, help="Ratio of warmup steps against total training steps." ) parser.add_argument( "--weight_decay", type=float, default=0.1, help="Weight decay to use." ) parser.add_argument( "--seed", type=int, default=42, help="A seed for reproducible training." ) args = parser.parse_args() return args def parse_benchmark_args(): parser = get_default_parser() parser.add_argument( "--model_name_or_path", type=str, default="google/vit-base-patch16-224", help="Path to a pretrained model or model identifier from huggingface.co/models." ) parser.add_argument( "--plugin", type=str, default="gemini", help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'." ) parser.add_argument( "--batch_size", type=int, default=8, help="Batch size (per dp group) for the training dataloader." ) parser.add_argument( "--num_labels", type=int, default=10, help="Number of labels for classification." ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use." ) parser.add_argument( "--weight_decay", type=float, default=0.0, help="Weight decay to use." ) parser.add_argument( "--max_train_steps", type=int, default=20, help="Total number of training steps to perform." ) parser.add_argument( "--seed", type=int, default=42, help="A seed for reproducible training." ) parser.add_argument( "--mem_cap", type=int, default=0, help="Limit on the usage of space for each GPU (in GB)." ) args = parser.parse_args() return args