import os import pytest import torch import colossalai from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_hf_output_close, clear_cache_before_run, rerun_if_address_is_in_use, spawn from tests.kit.model_zoo import model_zoo from tests.test_shardformer.test_model._utils import build_model, run_forward os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true' def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn): org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn) # forward check assert_hf_output_close(org_output, shard_output, ignore_keys=['past_key_values'], rtol=1e-4) # run backward org_loss.backward() shard_loss.backward() # check grad if hasattr(org_model, 'model'): llama_model = org_model.model shard_llama_model = sharded_model.model else: llama_model = org_model shard_llama_model = sharded_model org_grad = llama_model.layers[0].self_attn.q_proj.weight.grad shard_grad = shard_llama_model.layers[0].self_attn.q_proj.weight.grad shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)] shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad) all_shard_grad = torch.cat(shard_grad_list, dim=0) assert torch.allclose(org_loss, shard_loss, atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}" assert torch.allclose(org_grad, all_shard_grad, atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}" def check_llama(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') sub_model_zoo = model_zoo.get_sub_registry('transformers_llama') for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items(): org_model, sharded_model = build_model(world_size, model_fn) check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn) torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_llama(): spawn(check_llama, 4) if __name__ == "__main__": test_llama()