from transformers import T5ForConditionalGeneration from transformers.models.t5.modeling_t5 import ( T5Attention, T5DenseActDense, T5DenseGatedActDense, T5LayerCrossAttention, T5LayerFF, T5LayerSelfAttention, T5Stack, ) from colossalai.shardformer.layer import DropoutForParallelInput, Embedding1D, FusedRMSNorm, Linear1D_Col, Linear1D_Row from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription __all__ = ["T5ModelPolicy", "T5ForConditionalGenerationPolicy", "T5EncoderPolicy"] class T5ModelPolicy(Policy): def config_sanity_check(self): pass def preprocess(self): # reshape the embedding layer r""" Reshape the Embedding layer to make the embedding dimension divisible by world_size """ vocab_size = self.model.config.vocab_size world_size = self.shard_config.tensor_parallel_size if vocab_size % world_size != 0: new_vocab_size = vocab_size + world_size - vocab_size % world_size self.model.resize_token_embeddings(new_vocab_size) return self.model def module_policy(self): base_policy = { T5Stack: ModulePolicyDescription(attribute_replacement={}, param_replacement=[], sub_module_replacement=[ SubModuleReplacementDescription( suffix="dropout", target_module=DropoutForParallelInput, ) ]), T5LayerSelfAttention: ModulePolicyDescription(attribute_replacement={}, param_replacement=[], sub_module_replacement=[ SubModuleReplacementDescription( suffix="dropout", target_module=DropoutForParallelInput, ), ]), T5LayerCrossAttention: ModulePolicyDescription(attribute_replacement={}, param_replacement=[], sub_module_replacement=[ SubModuleReplacementDescription( suffix="dropout", target_module=DropoutForParallelInput, ) ]), T5Attention: ModulePolicyDescription(attribute_replacement={ "d_model": self.model.config.d_model // self.shard_config.tensor_parallel_size, "n_heads": self.model.config.num_heads // self.shard_config.tensor_parallel_size, "inner_dim": self.model.config.num_heads * self.model.config.d_kv // self.shard_config.tensor_parallel_size }, param_replacement=[], sub_module_replacement=[ SubModuleReplacementDescription( suffix="q", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="k", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="v", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="o", target_module=Linear1D_Row, ), SubModuleReplacementDescription(suffix="relative_attention_bias", target_module=Embedding1D, kwargs=dict(gather_output=False), ignore_if_not_exist=True) ]), T5LayerFF: ModulePolicyDescription(attribute_replacement={}, param_replacement=[], sub_module_replacement=[ SubModuleReplacementDescription( suffix="dropout", target_module=DropoutForParallelInput, ), ]), T5DenseGatedActDense: ModulePolicyDescription(attribute_replacement={}, param_replacement=[], sub_module_replacement=[ SubModuleReplacementDescription( suffix="wi_0", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="wi_1", target_module=Linear1D_Row, ), SubModuleReplacementDescription(suffix="wo", target_module=Linear1D_Col, kwargs=dict(gather_output=True)), SubModuleReplacementDescription( suffix="dropout", target_module=DropoutForParallelInput, ) ]), T5DenseActDense: ModulePolicyDescription(attribute_replacement={}, param_replacement=[], sub_module_replacement=[ SubModuleReplacementDescription( suffix="wi", target_module=Linear1D_Col, ), SubModuleReplacementDescription( suffix="wo", target_module=Linear1D_Row, ), SubModuleReplacementDescription( suffix="dropout", target_module=DropoutForParallelInput, ) ]) } # optimization configuration if self.shard_config.enable_fused_normalization: base_policy[T5LayerFF].sub_module_replacement.append( SubModuleReplacementDescription(suffix="layer_norm", target_module=FusedRMSNorm)) base_policy[T5LayerSelfAttention].sub_module_replacement.append( SubModuleReplacementDescription(suffix="layer_norm", target_module=FusedRMSNorm)) base_policy[T5LayerCrossAttention].sub_module_replacement.append( SubModuleReplacementDescription(suffix="layer_norm", target_module=FusedRMSNorm)) base_policy[T5Stack].sub_module_replacement.append( SubModuleReplacementDescription(suffix="final_layer_norm", target_module=FusedRMSNorm)) return base_policy def new_model_class(self): return None def postprocess(self): return self.model class T5ForConditionalGenerationPolicy(T5ModelPolicy): def module_policy(self): policy = super().module_policy() new_item = { T5ForConditionalGeneration: ModulePolicyDescription(attribute_replacement={}, param_replacement=[], sub_module_replacement=[ SubModuleReplacementDescription(suffix="lm_head", target_module=Linear1D_Col, kwargs=dict(gather_output=True)) ]) } policy.update(new_item) return policy class T5EncoderPolicy(T5ModelPolicy): pass