import torch from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, reduce_input, reduce_grad from colossalai.nn.layer.utils import divide from colossalai.core import global_context as gpc from packaging import version from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor, dist_spec from colossalai.tensor.graph import GraphOpNode, GraphGlobalEnv def colo_linear_1Drow(input_tensor: ColoTensor, weight: ColoTensor, bias: ColoTensor) -> ColoTensor: parallel_action = weight.spec.get_action_by_compute_pattern(ComputePattern.TP1D) # Input:S[1] x Weight:S[0] = Output:P # All-Reduce(Output) + bias = res # Input:S[1] input_tensor.to_dist_spec( dist_spec.shard(weight.spec.get_process_group(), [-1], [weight.spec.get_process_group().size()])) # Output:P partial_output = torch.nn.functional.linear(input_tensor.torch_tensor(), weight.torch_tensor()) # Reduce(Output) output = reduce_input(partial_output, parallel_action.parallel_mode) # Bias if bias is not None: assert not bias.has_spec(), 'Invalid bias spec for 1Drow Linear op' output = output + bias.torch_tensor() output = ColoTensor.init_from_torch_tensor(output, spec=TensorSpec(dist_spec.replicate(weight.spec.get_process_group()))) return output def colo_linear_1Dcol(input_tensor: ColoTensor, weight: ColoTensor, bias: ColoTensor) -> ColoTensor: # Input:B x Weight:S[1] + Bias:S[1] = Output:S[1] # All-Gather(Output) # Input:B parallel_action = weight.spec.get_action_by_compute_pattern(ComputePattern.TP1D) input_tensor.to_dist_spec(dist_spec.replicate(weight.spec.get_process_group())) input_parallel = reduce_grad(input_tensor.torch_tensor(), parallel_action.parallel_mode) if bias is not None: bias = bias.torch_tensor() output_parallel = torch.nn.functional.linear(input_parallel, weight.torch_tensor(), bias) output = ColoTensor.init_from_torch_tensor( output_parallel, spec=TensorSpec( dist_spec.shard(weight.spec.get_process_group(), [-1], [weight.spec.get_process_group().size()]), [ParallelAction(priority=1, parallel_mode=parallel_action.parallel_mode)])) if parallel_action.gather_out: # All-Gather(Output) output.to_dist_spec(dist_spec.replicate(weight.spec.get_process_group())) return output @colo_op_impl(torch.nn.functional.linear) def colo_linear(types, args, kwargs, pg): """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``. This method computes a linear. """ input_tensor = args[0] weight = args[1] if version.parse(torch.__version__) > version.parse("1.11.0"): if len(args) == 3: bias = args[2] else: bias = None else: bias = kwargs.get('bias', None) if not isinstance(input_tensor, ColoTensor): input_tensor = ColoTensor.init_from_torch_tensor(input_tensor) if not isinstance(weight, ColoTensor): weight = ColoTensor.init_from_torch_tensor(weight) if bias is not None and not isinstance(bias, ColoTensor): bias = ColoTensor.init_from_torch_tensor(bias) # building the computing graph, inputs -> op if GraphGlobalEnv().graph_building: cur_op_node = GraphOpNode('linear', [weight, bias]) cur_op_node.add_prev_tensor(input_tensor) # Add communication logic before and after linear call. ret_tensor = None if not weight.has_spec(): # No Model Parallel Applied assert bias.spec.is_gathered(), 'Invalid bias spec for native Linear op' assert bias.spec.is_gathered(), 'Invalid bias spec for native Linear op' input_tensor = input_tensor.torch_tensor() weight = weight.torch_tensor() if bias is not None: bias = bias.torch_tensor() ret_tensor = ColoTensor.init_from_torch_tensor(torch.nn.functional.linear(input_tensor, weight, bias)) elif weight.spec.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied if weight.spec.is_1D_col() and (bias is None or bias.spec.is_gathered()): ret_tensor = colo_linear_1Drow(input_tensor, weight, bias) elif weight.spec.is_1D_row() and (bias is None or bias.spec.is_1D_row() or bias.spec.is_1D_col()): ret_tensor = colo_linear_1Dcol(input_tensor, weight, bias) else: raise NotImplementedError else: raise NotImplementedError # building the computing graph, op -> output if GraphGlobalEnv().graph_building: cur_op_node.add_post_tensor(ret_tensor) return ret_tensor