#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from colossalai.communication import (recv_backward, recv_forward, recv_tensor_meta, send_backward, send_backward_recv_forward, send_forward, send_forward_recv_backward, send_tensor_meta) from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.logging import get_dist_logger from colossalai.utils import free_port, get_current_device BATCH_SIZE = 4 SEQ_LENGTH = 2 HIDDEN_SIZE = 16 CONFIG = dict(parallel=dict(pipeline=dict(size=4), tensor=dict(size=1, mode=None)), seed=1024) def check_equal(A, B): return torch.allclose(A, B, rtol=1e-5, atol=1e-3) def check_forward(output_tensor, rank, logger): dist.barrier() if gpc.is_first_rank(ParallelMode.PIPELINE): tensor = output_tensor.clone() else: tensor = recv_forward(output_tensor.shape) logger.info('Rank {} received forward. Correct tensor: {}'.format(rank, check_equal(tensor, output_tensor))) if not gpc.is_last_rank(ParallelMode.PIPELINE): send_forward(tensor) logger.info('Rank {} sent forward.'.format(rank)) def check_backward(output_grad, rank, logger): dist.barrier() if gpc.is_last_rank(ParallelMode.PIPELINE): grad = output_grad.clone() else: grad = recv_backward(output_grad.shape) logger.info('Rank {} received backward. Correct grad: {}'.format(rank, check_equal(grad, output_grad))) if not gpc.is_first_rank(ParallelMode.PIPELINE): send_backward(grad) logger.info('Rank {} sent backward.'.format(rank)) def check_forward_backward(output_tensor, output_grad, rank, logger): dist.barrier() if not gpc.is_first_rank(ParallelMode.PIPELINE): tensor = send_backward_recv_forward(output_grad, output_tensor.shape) logger.info('Rank {} sent backward received forward. Correct tensor: {}'.format( rank, check_equal(tensor, output_tensor))) if not gpc.is_last_rank(ParallelMode.PIPELINE): grad = send_forward_recv_backward(output_tensor, output_grad.shape) logger.info('Rank {} sent forward received backward. Correct grad: {}'.format( rank, check_equal(grad, output_grad))) def check_comm(size, rank, prev_rank, next_rank, logger): dtype = torch.float32 device = get_current_device() tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE) grad_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE) tensor = torch.randn(tensor_shape, dtype=dtype, device=device) dist.all_reduce(tensor) grad = torch.randn(grad_shape, dtype=dtype, device=device) dist.all_reduce(grad) check_forward(tensor, rank, logger) check_backward(grad, rank, logger) check_forward_backward(tensor, grad, rank, logger) def run_check(rank, world_size, port): launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') logger = get_dist_logger() rank = gpc.get_global_rank() prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE) next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE) logger.info('Rank {0}: prev rank {1}, next rank {2}'.format(rank, prev_rank, next_rank)) logger.info('Distributed environment is initialzied.') check_comm(world_size, rank, prev_rank, next_rank, logger) gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist def test_p2p(): world_size = 4 run_func = partial(run_check, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_p2p()