from functools import partial import diffusers import torch import transformers from ..registry import ModelAttribute, model_zoo BATCH_SIZE = 2 SEQ_LENGTH = 5 HEIGHT = 224 WIDTH = 224 IN_CHANNELS = 3 LATENTS_SHAPE = (BATCH_SIZE, IN_CHANNELS, HEIGHT // 7, WIDTH // 7) TIME_STEP = 3 data_vae_fn = lambda: dict(sample=torch.randn(2, 3, 32, 32)) data_unet_fn = lambda: dict(sample=torch.randn(2, 3, 32, 32), timestep=3) identity_output = lambda x: x clip_vision_model_output = lambda x: dict(pooler_output=x[1]) def data_clip_model(): input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) position_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32) return dict(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids) def data_clip_text(): input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) return dict(input_ids=input_ids, attention_mask=attention_mask) def data_clip_vision(): pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32) return dict(pixel_values=pixel_values) model_zoo.register(name='diffusers_auto_encoder_kl', model_fn=diffusers.AutoencoderKL, data_gen_fn=data_vae_fn, output_transform_fn=identity_output) model_zoo.register(name='diffusers_vq_model', model_fn=diffusers.VQModel, data_gen_fn=data_vae_fn, output_transform_fn=identity_output) model_zoo.register(name='diffusers_clip_model', model_fn=partial(transformers.CLIPModel, config=transformers.CLIPConfig()), data_gen_fn=data_clip_model, output_transform_fn=identity_output) model_zoo.register(name='diffusers_clip_text_model', model_fn=partial(transformers.CLIPTextModel, config=transformers.CLIPTextConfig()), data_gen_fn=data_clip_text, output_transform_fn=identity_output) model_zoo.register(name='diffusers_clip_vision_model', model_fn=partial(transformers.CLIPVisionModel, config=transformers.CLIPVisionConfig()), data_gen_fn=data_clip_vision, output_transform_fn=clip_vision_model_output) model_zoo.register(name='diffusers_unet2d_model', model_fn=diffusers.UNet2DModel, data_gen_fn=data_unet_fn, output_transform_fn=identity_output)