import copy from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.amp import convert_to_apex_amp, convert_to_torch_amp from colossalai.testing import assert_close_loose, rerun_if_address_is_in_use from colossalai.utils import free_port from tests.components_to_test.registry import non_distributed_component_funcs def run_torch_amp(): """ In this test, we compare the torch amp and apex amp implemented in colossalai """ torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # create layer test_models = ['resnet18', 'simple_net'] for test_name in test_models: get_component_func = non_distributed_component_funcs.get_callable(test_name) model_builder, train_dataloader, _, optim_class, _ = get_component_func() # create model torch_amp_model = model_builder(checkpoint=True).cuda() apex_amp_model = copy.deepcopy(torch_amp_model) # create optimizer # we use SGD here, since the correctness of gradient clipping can't be tested with Adam torch_amp_optimizer = torch.optim.SGD(torch_amp_model.parameters(), lr=1e-3) apex_amp_optimizer = torch.optim.SGD(apex_amp_model.parameters(), lr=1e-3) # inject torch and apex amp torch_amp_config = dict(init_scale=128, enabled=True) torch_amp_model, torch_amp_optimizer, _ = convert_to_torch_amp(torch_amp_model, torch_amp_optimizer, amp_config=torch_amp_config) apex_amp_config = dict(opt_level='O1', loss_scale=128) apex_amp_model, apex_amp_optimizer = convert_to_apex_amp(apex_amp_model, apex_amp_optimizer, apex_amp_config) # create data data_iter = iter(train_dataloader) data, label = next(data_iter) data = data.cuda() # forward pass torch_amp_output = torch_amp_model(data) apex_amp_output = apex_amp_model(data) assert_close_loose(torch_amp_output, apex_amp_output) for torch_amp_param, apex_amp_param in zip(torch_amp_model.parameters(), apex_amp_model.parameters()): assert_close_loose(torch_amp_param, apex_amp_param) # backward # use sum() to get big gradient torch_amp_optimizer.backward(torch_amp_output.sum()) apex_amp_optimizer.backward(apex_amp_output.sum()) # check grad # In apex amp, grad is not scaled before backward, but torch amp does for torch_amp_param, apex_amp_param in zip(torch_amp_model.parameters(), apex_amp_model.parameters()): assert_close_loose(torch_amp_param.grad, apex_amp_param.grad * apex_amp_config['loss_scale']) # clip gradient apex_amp_optimizer.clip_grad_norm(model=apex_amp_model, max_norm=1.0) torch_amp_optimizer.clip_grad_norm(model=torch_amp_model, max_norm=1.0) # step torch_amp_optimizer.step() apex_amp_optimizer.step() # check updated param and grad for torch_amp_param, apex_amp_param in zip(torch_amp_model.parameters(), apex_amp_model.parameters()): assert_close_loose(torch_amp_param.grad, apex_amp_param.grad) assert_close_loose(torch_amp_param, apex_amp_param) def run_dist(rank, world_size, port): colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost') run_torch_amp() @pytest.mark.dist @rerun_if_address_is_in_use() def test_torch_amp(): world_size = 1 run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_torch_amp()