# Code adapted from: # https://github.com/huggingface/diffusers/blob/v0.29.0-release/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py from typing import Callable, List, Optional, Union import PIL.Image import torch from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import ( ASPECT_RATIO_256_BIN, ASPECT_RATIO_512_BIN, ASPECT_RATIO_1024_BIN, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import retrieve_timesteps from colossalai.logging import get_dist_logger from ..layers.diffusion import DiffusionPipe logger = get_dist_logger(__name__) @torch.no_grad() def pixart_alpha_forward( self: DiffusionPipe, prompt: Union[str, List[str]] = None, negative_prompt: str = "", num_inference_steps: int = 20, timesteps: List[int] = None, sigmas: List[float] = None, guidance_scale: float = 4.5, num_images_per_prompt: Optional[int] = 1, height: Optional[int] = None, width: Optional[int] = None, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, clean_caption: bool = True, use_resolution_binning: bool = True, max_sequence_length: int = 120, **kwargs, ) -> PIL.Image: # 1. Check inputs. Raise error if not correct height = height or self.transformer.config.sample_size * self.vae_scale_factor width = width or self.transformer.config.sample_size * self.vae_scale_factor if use_resolution_binning: if self.transformer.config.sample_size == 128: aspect_ratio_bin = ASPECT_RATIO_1024_BIN elif self.transformer.config.sample_size == 64: aspect_ratio_bin = ASPECT_RATIO_512_BIN elif self.transformer.config.sample_size == 32: aspect_ratio_bin = ASPECT_RATIO_256_BIN else: raise ValueError("Invalid sample size") orig_height, orig_width = height, width height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin) self.check_inputs( prompt, height, width, negative_prompt, callback_steps, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, ) # 2. Default height and width to transformer if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, max_sequence_length=max_sequence_length, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) # 5. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.1 Prepare micro-conditions. added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if self.transformer.config.sample_size == 128: resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1) aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1) resolution = resolution.to(dtype=prompt_embeds.dtype, device=device) aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device) if do_classifier_free_guidance: resolution = torch.cat([resolution, resolution], dim=0) aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0) added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio} # 7. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) current_timestep = t if not torch.is_tensor(current_timestep): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = latent_model_input.device.type == "mps" if isinstance(current_timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) elif len(current_timestep.shape) == 0: current_timestep = current_timestep[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML current_timestep = current_timestep.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( latent_model_input, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, timestep=current_timestep, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: noise_pred = noise_pred.chunk(2, dim=1)[0] else: noise_pred = noise_pred # compute previous image: x_t -> x_t-1 if num_inference_steps == 1: # For DMD one step sampling: https://arxiv.org/abs/2311.18828 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample else: latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) output_type = "pil" # TODO(@lry89757) temporarily image, please support more return output if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] if use_resolution_binning: image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height) else: image = latents if not output_type == "latent": image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models # self.maybe_free_model_hooks() return image