from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor from colossalai.utils.memory import colo_device_memory_used, colo_device_memory_capacity from colossalai.utils import get_current_device from colossalai.gemini.stateful_tensor import StatefulTensor from colossalai.gemini import ChunkManager import torch import time from typing import List class MemStatsCollector: """ A Memory statistic collector. It works in two phases. Phase 1. Collection Phase: collect memory usage statistics of CPU and GPU. The first iteration of DNN training. Phase 2. Runtime Phase: use the read-only collected stats The rest iterations of DNN training. It has a Sampling counter which is reset after DNN training iteration. """ def __init__(self) -> None: self._mem_monitor = SyncCudaMemoryMonitor() self._model_data_cuda_list = [] self._overall_cuda_list = [] self._model_data_cpu_list = [] self._overall_cpu_list = [] self._non_model_data_cuda_list = [] self._non_model_data_cpu_list = [] self._sampling_time = [] self._start_flag = False self._step_idx = 0 self._step_total = 0 def overall_mem_stats(self, device_type: str) -> List[int]: if device_type == 'cuda': return self._overall_cuda_list elif device_type == 'cpu': return self._overall_cpu_list else: raise TypeError def model_data_list(self, device_type: str) -> List[int]: if device_type == 'cuda': return self._model_data_cuda_list elif device_type == 'cpu': return self._model_data_cpu_list else: raise TypeError def non_model_data_list(self, device_type: str) -> List[int]: if device_type == 'cuda': return self._non_model_data_cuda_list elif device_type == 'cpu': return self._non_model_data_cpu_list else: raise TypeError def next_period_non_model_data_usage(self, device_type: str) -> int: """Get max non model data memory usage of current sampling period Args: device_type (str): device type, can be 'cpu' or 'cuda'. Returns: int: max non model data memory usage of current sampling period """ assert not self._start_flag, 'Cannot get mem stats info during collection phase.' assert self._step_total > 0, 'Cannot get mem stats info before collection phase.' next_non_model_data = self.non_model_data_list(device_type)[self._step_idx] self._step_idx = (self._step_idx + 1) % self._step_total return next_non_model_data @property def sampling_time(self): return [t - self._sampling_time[0] for t in self._sampling_time] def start_collection(self): self._start_flag = True self._mem_monitor.start() def finish_collection(self): self.sample_overall_data() self._step_total = len(self._sampling_time) self._start_flag = False self._mem_monitor.finish() def sample_model_data(self) -> None: """Sampling model data statistics. """ if self._start_flag: cuda_mem = StatefulTensor.GST_MGR.total_mem['cuda'] cpu_mem = StatefulTensor.GST_MGR.total_mem['cpu'] self._model_data_cuda_list.append(cuda_mem) self._model_data_cpu_list.append(cpu_mem) def sample_overall_data(self) -> None: """Sampling non model data statistics. """ if self._start_flag: # overall data recording is after model data recording if len(self._model_data_cuda_list) == 0: return self._overall_cuda_list.append(self._mem_monitor.finish()) self._overall_cpu_list.append(colo_device_memory_used(torch.device('cpu'))) assert len(self._model_data_cuda_list) == len(self._overall_cuda_list) self._non_model_data_cuda_list.append(self._overall_cuda_list[-1] - self._model_data_cuda_list[-1]) self._non_model_data_cpu_list.append(self._overall_cpu_list[-1] - self._model_data_cpu_list[-1]) self._sampling_time.append(time.time()) self._mem_monitor.start() def clear(self) -> None: self._model_data_cuda_list = [] self._overall_cuda_list = [] self._model_data_cpu_list = [] self._overall_cpu_list = [] self._non_model_data_cpu_list = [] self._non_model_data_cuda_list = [] self._start_flag = False self._step_idx = 0 self._step_total = 0 class MemStatsCollectorV2(MemStatsCollector): def __init__(self, chunk_manager: ChunkManager) -> None: super().__init__() self._chunk_manager = chunk_manager def sample_model_data(self) -> None: """Sampling model data statistics. """ if self._start_flag: cuda_mem = self._chunk_manager.total_mem['cuda'] cpu_mem = self._chunk_manager.total_mem['cpu'] self._model_data_cuda_list.append(cuda_mem) self._model_data_cpu_list.append(cpu_mem) @property def cuda_margin_mem(self) -> float: return colo_device_memory_capacity(get_current_device()) - max(self.overall_mem_stats('cuda'))