import torch from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.tensor.colo_tensor import ColoTensor from packaging import version @colo_op_impl(torch.nn.functional.linear) def colo_linear(types, args, kwargs, pg): """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``. This method computes a linear. """ input_tensor = args[0] weight = args[1] if version.parse(torch.__version__) > version.parse("1.11.0"): if len(args) == 3: bias = args[2] else: bias = None else: bias = kwargs.get('bias', None) if isinstance(bias, ColoTensor): bias = bias.torch_tensor() # Add communication logic before and after linear call. if isinstance(weight, ColoTensor): return torch.nn.functional.linear(input_tensor, weight.torch_tensor(), bias) else: return torch.nn.functional.linear(input_tensor, weight, bias)