model: base_learning_rate: 1.0e-04 target: ldm.models.diffusion.ddpm.LatentDiffusion params: linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: image cond_stage_key: txt image_size: 64 channels: 4 cond_stage_trainable: false # Note: different from the one we trained before conditioning_key: crossattn monitor: val/loss_simple_ema scale_factor: 0.18215 use_ema: False scheduler_config: # 10000 warmup steps target: ldm.lr_scheduler.LambdaLinearScheduler params: warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases f_start: [ 1.e-6 ] f_max: [ 1.e-4 ] f_min: [ 1.e-10 ] unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 32 # unused from_pretrained: '/data/scratch/diffuser/stable-diffusion-v1-4/unet/diffusion_pytorch_model.bin' in_channels: 4 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 768 use_checkpoint: False legacy: False first_stage_config: target: ldm.models.autoencoder.AutoencoderKL params: embed_dim: 4 from_pretrained: '/data/scratch/diffuser/stable-diffusion-v1-4/vae/diffusion_pytorch_model.bin' monitor: val/rec_loss ddconfig: double_z: true z_channels: 4 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.FrozenCLIPEmbedder params: use_fp16: True data: target: main.DataModuleFromConfig params: batch_size: 16 num_workers: 4 train: target: ldm.data.teyvat.hf_dataset params: path: Fazzie/Teyvat image_transforms: - target: torchvision.transforms.Resize params: size: 512 # - target: torchvision.transforms.RandomCrop # params: # size: 256 # - target: torchvision.transforms.RandomHorizontalFlip lightning: trainer: accelerator: 'gpu' devices: 2 log_gpu_memory: all max_epochs: 10 precision: 16 auto_select_gpus: False strategy: target: lightning.pytorch.strategies.ColossalAIStrategy params: use_chunk: False enable_distributed_storage: True, placement_policy: cuda force_outputs_fp32: False log_every_n_steps: 2 logger: True default_root_dir: "/tmp/diff_log/" profiler: pytorch logger_config: wandb: target: lightning.pytorch.loggers.WandbLogger params: name: nowname save_dir: "/tmp/diff_log/" offline: opt.debug id: nowname