import time from typing import List, Optional import torch from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor from colossalai.gemini.stateful_tensor import StatefulTensor from colossalai.utils.memory import colo_device_memory_used from .memory_stats import MemStats class MemStatsCollector: """ A Memory statistic collector. It works in two phases. Phase 1. Collection Phase: collect memory usage statistics of CPU and GPU. The first iteration of DNN training. Phase 2. Runtime Phase: use the read-only collected stats The rest iterations of DNN training. It has a Sampling counter which is reset after DNN training iteration. """ def __init__(self, memstats: Optional[MemStats] = None) -> None: self._mem_monitor = SyncCudaMemoryMonitor() self._sampling_time = [] self._start_flag = False self._step_idx = 0 self._step_total = 0 if memstats is not None: self.use_outside_memstats = True self._memstats = memstats else: self.use_outside_memstats = False self._memstats = MemStats() def next_period_non_model_data_usage(self, device_type: str) -> int: """Get max non model data memory usage of current sampling period Args: device_type (str): device type, can be 'cpu' or 'cuda'. Returns: int: max non model data memory usage of current sampling period """ assert not self._start_flag, 'Cannot get mem stats info during collection phase.' assert self._step_total > 0, 'Cannot get mem stats info before collection phase.' next_non_model_data = self._memstats.non_model_data_list(device_type)[self._step_idx] self._step_idx = (self._step_idx + 1) % self._step_total return next_non_model_data @property def sampling_time(self): return [t - self._sampling_time[0] for t in self._sampling_time] def start_collection(self): self._start_flag = True self._mem_monitor.start() def finish_collection(self): self.sample_overall_data() self._step_total = len(self._sampling_time) self._start_flag = False self._mem_monitor.finish() def sample_model_data(self) -> None: """Sampling model data statistics. """ if self._start_flag and not self.use_outside_memstats: cuda_mem = StatefulTensor.GST_MGR.total_mem['cuda'] cpu_mem = StatefulTensor.GST_MGR.total_mem['cpu'] self._memstats.append_model_data('cuda', cuda_mem) self._memstats.append_model_data('cpu', cpu_mem) def sample_overall_data(self) -> None: """Sampling non model data statistics. """ if self._start_flag and not self.use_outside_memstats: # overall data recording is after model data recording if len(self._memstats._model_data_cuda_list) == 0: return self._memstats.append_overall_data('cuda', self._mem_monitor.finish()) self._memstats.append_overall_data('cpu', colo_device_memory_used(torch.device('cpu'))) assert len(self._memstats._model_data_cuda_list) == len(self._memstats._overall_cuda_list) self._memstats.append_non_model_data('cuda') self._memstats.append_non_model_data('cpu') self._mem_monitor.start() if self._start_flag: self._sampling_time.append(time.time()) def clear(self) -> None: self._memstats.clear() self._start_flag = False self._step_idx = 0 self._step_total = 0