import torch import colossalai import pytest import torch.multiprocessing as mp from typing import List from functools import partial from colossalai.tensor import ChunkManager from colossalai.testing import rerun_if_address_is_in_use, parameterize from colossalai.utils import free_port from colossalai.core import global_context as gpc from colossalai.context import ParallelMode def check_has_params(params: List[torch.Tensor], has_tensors: List[bool]): for p, has_tensor in zip(params, has_tensors): if has_tensor: assert p.storage().size() > 0 assert p.device.type == 'cuda' else: assert p.storage().size() == 0 # HAS_TENSORS[use_chunk][use_zero] HAS_TENSORS = { True: { True: [[True, True, False], [False, False, True]], False: [[True, True, True], [True, True, True]] }, False: { True: [[True, False, True], [False, True, False]], False: [[True, True, True], [True, True, True]] } } TOTAL_MEM = {True: {True: [512, 512], False: [1024, 1024]}, False: {True: [512, 256], False: [768, 768]}} @parameterize('use_chunk', [False, True]) @parameterize('use_zero', [False, True]) def run_chunk_zero(use_chunk, use_zero): rank = gpc.get_local_rank(ParallelMode.DATA) if rank == 0: print(f'use_chunk={use_chunk}, use_zero={use_zero}') params = [torch.rand(8, 8) for _ in range(3)] chunk_size = 128 if use_chunk else None chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero) chunk_manager.create_group('param') assert chunk_manager.total_mem['cpu'] == 0 assert chunk_manager.total_mem['cuda'] == 0 for p in params: chunk_manager.append_tensor(p, 'param') check_has_params(params, HAS_TENSORS[use_chunk][use_zero][rank]) assert chunk_manager.total_mem['cpu'] == 0 assert chunk_manager.total_mem['cuda'] == TOTAL_MEM[use_chunk][use_zero][rank] chunks = chunk_manager.get_chunks(params) for chunk in chunks: chunk_manager.access_chunk(chunk) check_has_params(params, [True, True, True]) assert chunk_manager.total_mem['cpu'] == 0 assert chunk_manager.total_mem['cuda'] == TOTAL_MEM[use_chunk][False][rank] for chunk in chunks: chunk_manager.release_chunk(chunk) check_has_params(params, HAS_TENSORS[use_chunk][use_zero][rank]) assert chunk_manager.total_mem['cpu'] == 0 assert chunk_manager.total_mem['cuda'] == TOTAL_MEM[use_chunk][use_zero][rank], chunk_manager.total_mem['cuda'] for chunk in chunks: chunk_manager.move_chunk(chunk, torch.device('cpu')) assert chunk_manager.total_mem['cpu'] == TOTAL_MEM[use_chunk][use_zero][rank], chunk_manager.total_mem['cuda'] assert chunk_manager.total_mem['cuda'] == 0 def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_chunk_zero() @pytest.mark.dist @pytest.mark.parametrize('world_size', [2]) @rerun_if_address_is_in_use() def test_chunk_mapping(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_chunk_mapping(2)