model: base_learning_rate: 1.0e-4 params: parameterization: "v" linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: image cond_stage_key: txt image_size: 64 channels: 4 cond_stage_trainable: false conditioning_key: crossattn monitor: val/loss_simple_ema scale_factor: 0.18215 use_ema: False # we set this to false because this is an inference only config scheduler_config: # 10000 warmup steps warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases f_start: [ 1.e-6 ] f_max: [ 1.e-4 ] f_min: [ 1.e-10 ] unet_config: use_checkpoint: True use_fp16: True image_size: 32 # unused in_channels: 4 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_head_channels: 64 # need to fix for flash-attn use_spatial_transformer: True use_linear_in_transformer: True transformer_depth: 1 context_dim: 1024 legacy: False first_stage_config: embed_dim: 4 monitor: val/rec_loss ddconfig: #attn_type: "vanilla-xformers" double_z: true z_channels: 4 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 cond_stage_config: freeze: True layer: "penultimate" data: batch_size: 128 # num_workwers should be 2 * batch_size, and the total num less than 1024 # e.g. if use 8 devices, no more than 128 num_workers: 128 train: target: ldm.data.base.Txt2ImgIterableBaseDataset params: file_path: # YOUR DATAPATH world_size: 1 rank: 0 lightning: trainer: accelerator: 'gpu' devices: 8 log_gpu_memory: all max_epochs: 2 precision: 16 auto_select_gpus: False strategy: find_unused_parameters: False log_every_n_steps: 2 # max_steps: 6o logger: True default_root_dir: "/tmp/diff_log/" # profiler: pytorch logger_config: wandb: name: nowname save_dir: "/data2/tmp/diff_log/" offline: opt.debug id: nowname