from typing import Any, Callable, Dict, List, Optional from collections import OrderedDict from dataclasses import dataclass import torch import torch.nn as nn from loralib.layers import LoRALayer from coati.models.lora import LoraLinear @dataclass class LoRAConfig: r: int = 0 lora_alpha: int = 1 lora_dropout: float = 0 fan_in_fan_out: bool = False class LoRAConstructor: ''' Tools for reconstructing a model from a remote LoRA model. (Transfering only LoRA data costs much less!) Usage: Step 1 (Sender): filter_state_dict_lora() Step 2 (Sender, Optional): extract_lora_config() Step 3 (Sender): send state_dict_lora and lora_config_dict Step 4 (Receiver): reconstruct_increase() Step 5 (Receiver): load_state_dict_increase() ''' def __init__(self): self.lora_config_dict = None def register_lora_config(self, lora_config_dict: Dict[str, Any]): self.lora_config_dict = lora_config_dict def reconstruct_increase(self, state_dict_lora: Dict[str, Any], lora_config_dict: Dict[str, Any]): ''' xxx.lora_A, xxx.lora_B -->> xxx.weight Warning: the xxx.weight here is the increment actually. ''' if lora_config_dict is not None: self.register_lora_config(lora_config_dict) state_dict_increasae = OrderedDict() config_iter = iter(self.lora_config_dict.items()) lora_A, lora_B, layer_prefix = None, None, None for k, v in state_dict_lora.items(): if k.rpartition('.')[-1] == 'lora_A': lora_A = v layer_prefix = k.rpartition('.')[0] elif k.rpartition('.')[-1] == 'lora_B': assert layer_prefix == k.rpartition('.')[0], "unmatched (lora_A, lora_B) pair" layer_prefix_2, config = next(config_iter) assert layer_prefix_2 == layer_prefix, "unmatched (state_dict, config_dict) pair" lora_B = v weight_data_increase = self._compute(lora_A, lora_B, config) state_dict_increasae[layer_prefix + '.weight'] = weight_data_increase lora_A, lora_B, layer_prefix = None, None, None else: raise ValueError('unexpected key') return state_dict_increasae def _compute(self, lora_A, lora_B, config=LoRAConfig()): def T(w): return w.T if config.fan_in_fan_out else w if config.r > 0: scaling = config.lora_alpha / config.r weight_data_increase = T(lora_B @ lora_A) * scaling return weight_data_increase return 0 def load_state_dict_increase(self, model: nn.Module, state_dict_increasae: Dict[str, Any]): ''' The final reconstruction step ''' # naive approach model.load_state_dict({k: v + model.state_dict()[k] for k, v in state_dict_increasae.items()}, strict=False) @staticmethod def filter_state_dict_lora(state_dict: Dict[str, Any], keep_non_lora=False): ''' if keep_non_lora, also return non_lora state_dict ''' state_dict_lora = OrderedDict() state_dict_non_lora = OrderedDict() for k, v in state_dict.items(): if 'lora_A' in k or 'lora_B' in k: state_dict_lora[k] = v elif keep_non_lora: state_dict_non_lora[k] = v if keep_non_lora: return state_dict_lora, state_dict_non_lora else: return state_dict_lora, None @staticmethod def extract_lora_config(model: nn.Module) -> Dict[str, LoRAConfig]: ''' extract LoraLinear model. return OrderedDict(): name -> LoRAConfig ''' lora_config_dict = OrderedDict() for name, child in model.named_modules(): if isinstance(child, LoraLinear): lora_config_dict[name] = LoRAConfig(r=child.r, lora_alpha=child.lora_alpha, lora_dropout=child.lora_dropout, fan_in_fan_out=child.fan_in_fan_out) return lora_config_dict