# 2.5D Tensor Parallelism Author: Zhengda Bian, Yongbin Li **Prerequisite** - [Define Your Configuration](../basics/define_your_config.md) - [Configure Parallelization](../basics/configure_parallelization.md) - [1D Tensor Parallelism](./1D_tensor_parallel.md) - [2D Tensor Parallelism](./2D_tensor_parallel.md) **Example Code** - [ColossalAI-Examples - 2.5D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md) **Related Paper** - [2.5-dimensional distributed model training](https://arxiv.org/pdf/2105.14500.pdf) ## Introduction Compared with 1D tensor parallelism, 2D parallelism reduces the memory cost, but may introduce more communication. Therefore, a [2.5D tensor parallelism algorithm](https://arxiv.org/pdf/2105.14500.pdf) was proposed based on 2.5D SUMMA to reduce communication by using more devices. Let's still take a linear layer $Y = XA$ as an example. Given $P=q \times q \times d$ processors (necessary condition), e.g. $q=d=2$, we split the input $X$ into $d\times q$ rows and $q$ columns as $$ \left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \\ X_{20} & X_{21} \\ X_{30} & X_{31}\end{matrix} \right], $$ which can be reshaped into $d$ layers as $$ \left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{matrix} \right] \text{~and~}\left[\begin{matrix} X_{20} & X_{21} \\ X_{30} & X_{31} \end{matrix} \right]. $$ Also, the weight $A$ is split into $$ \left[\begin{matrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{matrix} \right]. $$ For each layer of $X$, we use the SUMMA algorithm to multiply $X$ and $A$. Then, we have the output $$ \left[\begin{matrix} Y_{00}=X_{00}A_{00}+X_{01}A_{10} & Y_{01}=X_{00}A_{01}+X_{01}A_{11} \\ Y_{10}=X_{10}A_{00}+X_{11}A_{10} & Y_{11}=X_{10}A_{01}+X_{11}A_{11} \end{matrix} \right] \text{~and~} $$ $$ \left[\begin{matrix} Y_{20}=X_{20}A_{00}+X_{21}A_{10} & Y_{21}=X_{20}A_{01}+X_{21}A_{11} \\ Y_{30}=X_{30}A_{00}+X_{31}A_{10} & Y_{31}=X_{30}A_{01}+X_{31}A_{11} \end{matrix} \right]. $$ ## Efficiency Given $P=q \times q \times d$ processors, we present the theoretical computation and memory cost, as well as the communication cost based on the ring algorithm in both the forward and backward pass of 2.5D tensor parallelism. | Computation | Memory (parameters) | Memory (activations) | Communication (bandwidth) | Communication (latency) | | :-: | :-: | :-: | :-: | :-: | | $O(1/dq^2)$ | $O(1/q^2)$ | $O(1/dq^2)$ | $\small O(3(q-1)(d+1)/dq)$ | $O(6(q-1))$ | ## Usage To enable 2.5D tensor parallelism for our model, e.g. on 8 GPUs, we need to configure the parallelism setting as below. ```python CONFIG = dict(parallel=dict( data=1, pipeline=1, tensor=dict(size=8, mode='2.5d', depth=2), )) ``` Then Colossal-AI will automatically apply 2.5D parallelism to all the layers from `colossalai.nn`. Let's define a model that consists of a two-layer multi-layer perceptron (MLP) as below. ```python import colossalai import colossalai.nn as col_nn import torch from colossalai.utils import print_rank_0 class MLP(torch.nn.Module): def __init__(self, dim: int = 256): super().__init__() intermediate_dim = dim * 4 self.dense_1 = col_nn.Linear(dim, intermediate_dim) print_rank_0(f'Weight of the first linear layer: {self.dense_1.weight.shape}') self.activation = torch.nn.GELU() self.dense_2 = col_nn.Linear(intermediate_dim, dim) print_rank_0(f'Weight of the second linear layer: {self.dense_2.weight.shape}') self.dropout = col_nn.Dropout(0.1) def forward(self, x): x = self.dense_1(x) print_rank_0(f'Output of the first linear layer: {x.shape}') x = self.activation(x) x = self.dense_2(x) print_rank_0(f'Output of the second linear layer: {x.shape}') x = self.dropout(x) return x ``` Launch Colossal-AI on 8 GPUs and build the model ```python parser = colossalai.get_default_parser() colossalai.launch(config=CONFIG, rank=args.rank, world_size=args.world_size, local_rank=args.local_rank, host=args.host, port=args.port) m = MLP() ``` We will see the shapes of partitioned parameters(e.g. weights) in the MLP model. ```shell Weight of the first linear layer: torch.Size([128, 512]) Weight of the second linear layer: torch.Size([512, 128]) ``` The complete weight of the first linear layer is supposed to have the shape `[256, 1024]`. After the partitioning of 2.5D parallelism, it becomes `[128, 512]` on each GPU. Similarly, the second layer partitions the weight `[1024, 256]` into `[512, 128]`. We can run the model with some random inputs. ```python from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import get_current_device x = torch.randn((16, 256), device=get_current_device()) # partition input torch.distributed.broadcast(x, src=0) x = torch.chunk(x, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP)] x = torch.chunk(x, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL)] x = torch.chunk(x, 2, dim=-1)[gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW)] print_rank_0(f'Input: {x.shape}') x = m(x) ``` Then we can see the shapes of activation results. ```shell Input: torch.Size([4, 128]) Output of the first linear layer: torch.Size([4, 512]) Output of the second linear layer: torch.Size([4, 128]) ``` The activation tensors in 2.5D parallelism are all split by $d \times q$ in the row and $q$ in the column. E.g. the output of the first linear layer has the shape `[4, 512]`), while the second layer has the output of `[4, 128]`. Note, 2.5D parallelism use the same partition method as 2D parallelism for weights, where the difference is the partition of input.