from typing import List, Union, Mapping, Dict, Any import torch.optim as optim from torch import Tensor from colossalai.tensor.colo_tensor import ColoTensor class ColoOptimizer(optim.Optimizer): def __init__(self, named_params: Mapping[str, Union[Tensor, ColoTensor]], optimizer_class, *optimizer_args, **optimizer_kwargs): """ ColoOptimizer collects all tensors in type of ColoTensor and torch.Tensor, then use these tensors as ``params`` for optimizers Args: named_params (Dict[str, Union[Tensor, ShardedTensor]]) : a Dict of parameters, where key is the parameter key, value is either Tensor or ColoTensor. This usually used in conjunction with model.named_parameters(), the same as PyTorch. optimizer_class (torch.optim.Optimizer): the Optimizer to use locally, i.e. torch.optim.SGD, torch.optim.Adagrad, etc. *optimizer_args: the arguments to initialize the optimizer. **optimizer_kwargs: the key-word arguments to initialize the optimizer. """ tensors: List[Tensor] = [] for value in named_params.values(): tensors.append(value) self.named_params = named_params self._optim = optimizer_class(tensors, *optimizer_args, **optimizer_kwargs) self.param_groups = self._optim.param_groups self.state = self._optim.state def zero_grad(self, set_to_none: bool = False): # type: ignore[override] r"""Sets the gradients of all optimized :class:`torch.Tensor` s to zero. Args: set_to_none (bool): instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests ``zero_grad(set_to_none=True)`` followed by a backward pass, ``.grad``\ s are guaranteed to be None for params that did not receive a gradient. 3. ``torch.optim`` optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether). """ self._optim.zero_grad(set_to_none) def step(self, closure=None): r"""Performs a single optimization step (parameter update). Args: closure (callable): A closure that reevaluates the model and returns the loss. Optional for most optimizers. .. note:: Unless otherwise specified, this function should not modify the ``.grad`` field of the parameters. """ self._optim.step(closure) def state_dict(self) -> Dict[str, Any]: """ Returned state and param_groups will contain parameter keys instead of parameter indices like torch.optim.Optimizer. """ # TODO: implement state_dict raise NotImplementedError("ColoOptimizer state_dict not implemented yet!") def load_state_dict(self, state_dict: Mapping[str, Any]): r"""Loads the ColoOptimizer state. Args: state_dict (dict): ColoOptimizer state. Should be an object returned from a call to :meth:`state_dict`. """ # TODO: implement load_state_dict raise NotImplementedError("ColoOptimizer load_state_dict not implemented yet!") def add_param_group(self, param_group: Any): r"""Add a new param group """ # TODO: implement add_param_group raise NotImplementedError("ColoOptimizer add_param_group not implemented yet!")