// modified from // https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_apply.cuh #include #include #include #include #include #include #include "compat.h" // #include // This header is the one-stop shop for all your multi-tensor apply needs. // TODO: Kernel arg size limit may be <4KB for some other cards (ie Jetson) constexpr int depth_to_max_tensors[5] = {110, 64, 48, 36, 30}; constexpr int depth_to_max_blocks[5] = {320, 320, 320, 320, 320}; template struct TensorListMetadata { void *addresses[n][depth_to_max_tensors[n - 1]]; int sizes[depth_to_max_tensors[n - 1]]; unsigned char block_to_tensor[depth_to_max_blocks[n - 1]]; int block_to_chunk[depth_to_max_blocks[n - 1]]; // I fear this needs to be a // full int. int start_tensor_this_launch; }; template __global__ void multi_tensor_apply_kernel(int chunk_size, volatile int *noop_flag, T tl, U callable, ArgTypes... args) { // Hand the chunk information to the user-supplied functor to process however // it likes. callable(chunk_size, noop_flag, tl, args...); } template void multi_tensor_apply( int block_size, int chunk_size, const at::Tensor &noop_flag, const std::vector> &tensor_lists, T callable, ArgTypes... args) { TORCH_CHECK(tensor_lists.size() == depth, "tensor_lists.size() != depth"); int len0 = tensor_lists[0].size(); TORCH_CHECK(len0 > 0, "tensor_lists[0].size() is not > 0"); auto ref_device = tensor_lists[0][0].device(); TORCH_CHECK(ref_device.type() == at::kCUDA, "expected input to be on cuda"); for (int l = 0; l < tensor_lists.size(); l++) // No range-based for because I need indices { TORCH_CHECK(tensor_lists[l].size() == len0, "Size mismatch among tensor lists"); for (int t = 0; t < tensor_lists[l].size(); t++) { // TODO: Print which tensor fails. bool contiguous_memory = tensor_lists[l][t].is_contiguous(); #ifdef VERSION_GE_1_5 contiguous_memory = (contiguous_memory || tensor_lists[l][t].is_contiguous(at::MemoryFormat::ChannelsLast)); #endif TORCH_CHECK(contiguous_memory, "A tensor was not contiguous."); TORCH_CHECK(tensor_lists[l][t].device() == ref_device, "A tensor was not on the same device as the first tensor"); TORCH_CHECK(tensor_lists[l][t].numel() == tensor_lists[0][t].numel(), "Size mismatch"); } } int ntensors = tensor_lists[0].size(); TensorListMetadata tl; const at::cuda::OptionalCUDAGuard device_guard(device_of(tensor_lists[0][0])); auto stream = at::cuda::getCurrentCUDAStream(); tl.start_tensor_this_launch = 0; int loc_block_info = 0; int loc_tensor_info = 0; for (int t = 0; t < ntensors; t++) { tl.sizes[loc_tensor_info] = tensor_lists[0][t].numel(); for (int d = 0; d < depth; d++) tl.addresses[d][loc_tensor_info] = tensor_lists[d][t].data_ptr(); loc_tensor_info++; int chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1) / chunk_size; for (int chunk = 0; chunk < chunks_this_tensor; chunk++) { // std::cout << chunks_this_tensor << std::endl; tl.block_to_tensor[loc_block_info] = loc_tensor_info - 1; tl.block_to_chunk[loc_block_info] = chunk; loc_block_info++; bool tensors_full = (loc_tensor_info == depth_to_max_tensors[depth - 1] && chunk == chunks_this_tensor - 1); bool blocks_full = (loc_block_info == depth_to_max_blocks[depth - 1]); bool last_chunk = (t == ntensors - 1 && chunk == chunks_this_tensor - 1); if (tensors_full || blocks_full || last_chunk) { // using accscalar_t = acc_type; multi_tensor_apply_kernel<<>>( chunk_size, noop_flag.DATA_PTR(), tl, callable, args...); AT_CUDA_CHECK(cudaGetLastError()); // Reset. The control flow possibilities here make my brain hurt. loc_block_info = 0; if (chunk == chunks_this_tensor - 1) { // std::cout << "Hit case 1 " << cond1 << " " << cond2 << " " << cond3 // << std::endl; loc_tensor_info = 0; tl.start_tensor_this_launch = t + 1; } else { // std::cout << "Hit case 2 " << cond1 << " " << cond2 << " " << cond3 // << std::endl; tl.sizes[0] = tl.sizes[loc_tensor_info - 1]; for (int d = 0; d < depth; d++) tl.addresses[d][0] = tl.addresses[d][loc_tensor_info - 1]; loc_tensor_info = 1; tl.start_tensor_this_launch = t; } } } } }