from functools import partial import pytest import torch import torch.fx import torch.multiprocessing as mp import colossalai from colossalai.core import global_context as gpc from colossalai.fx._compatibility import is_compatible_with_meta from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE from colossalai.fx.passes.meta_info_prop import MetaInfoProp from colossalai.utils import free_port from tests.test_autochunk.evoformer.evoformer import evoformer_base if CODEGEN_AVAILABLE and is_compatible_with_meta(): from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen from colossalai.fx.profiler import MetaTensor def assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len): found_regions = [i["region"] for i in chunk_infos] if msa_len == 32 and pair_len == 64: if max_memory is None: target_regions = [(142, 154), (366, 373), (233, 283), (301, 351), (127, 134), (204, 228), (167, 191), (161, 166), (198, 203), (6, 69)] elif max_memory == 20: target_regions = [(142, 154), (369, 373), (233, 269), (301, 351)] elif max_memory == 25: target_regions = [(144, 154), (369, 370)] elif max_memory == 30: target_regions = [(144, 154)] else: raise NotImplementedError() else: raise NotImplementedError() assert len(found_regions) == len( target_regions), "len of found regions %s doesn't equal len of target regions %s" % ( str(found_regions), str(target_regions), ) for region in target_regions: assert (region in found_regions), "region:%s not in found regions for msa:%d, pair:%d, maxmem:%d" % ( str(region), msa_len, pair_len, max_memory, ) for region in found_regions: assert (region in target_regions), "region:%s should not be found for msa:%d, pair:%d, maxmem:%d" % ( str(region), msa_len, pair_len, max_memory, ) def _test_autochunk_search(rank, msa_len, pair_len, max_memory): # launch colossalai colossalai.launch( config={}, rank=rank, world_size=1, host="localhost", port=free_port(), backend="nccl", ) # build model and input model = evoformer_base().cuda() node = torch.randn(1, msa_len, pair_len, 256).cuda() pair = torch.randn(1, pair_len, pair_len, 128).cuda() gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace interp = MetaInfoProp(gm_prop) interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")) codegen = AutoChunkCodeGen(gm_prop, max_memory=max_memory) chunk_infos = codegen.chunk_infos assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len) gpc.destroy() @pytest.mark.skipif(not (CODEGEN_AVAILABLE and is_compatible_with_meta()), reason="torch version is lower than 1.12.0") @pytest.mark.parametrize("max_memory", [None, 20, 25, 30]) @pytest.mark.parametrize("msa_len", [32]) @pytest.mark.parametrize("pair_len", [64]) def test_autochunk_search(msa_len, pair_len, max_memory): run_func = partial( _test_autochunk_search, msa_len=msa_len, pair_len=pair_len, max_memory=max_memory, ) mp.spawn(run_func, nprocs=1) if __name__ == "__main__": _test_autochunk_search(0, 32, 64, 20)