# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partialmethod, partial import math from typing import Optional, List import torch import torch.nn as nn from .primitives import Linear, LayerNorm, Attention from .tensor_utils import ( chunk_layer, permute_final_dims, flatten_final_dims, ) class TriangleAttention(nn.Module): def __init__( self, c_in, c_hidden, no_heads, starting, inf=1e9 ): """ Args: c_in: Input channel dimension c_hidden: Overall hidden channel dimension (not per-head) no_heads: Number of attention heads """ super(TriangleAttention, self).__init__() self.c_in = c_in self.c_hidden = c_hidden self.no_heads = no_heads self.starting = starting self.inf = inf self.layer_norm = LayerNorm(self.c_in) self.linear = Linear(c_in, self.no_heads, bias=False, init="normal") self.mha = Attention( self.c_in, self.c_in, self.c_in, self.c_hidden, self.no_heads ) @torch.jit.ignore def _chunk(self, x: torch.Tensor, biases: List[torch.Tensor], chunk_size: int, ) -> torch.Tensor: mha_inputs = { "q_x": x, "kv_x": x, "biases": biases, } return chunk_layer( partial(self.mha), mha_inputs, chunk_size=chunk_size, no_batch_dims=len(x.shape[:-2]), ) def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None, chunk_size: Optional[int] = None ) -> torch.Tensor: """ Args: x: [*, I, J, C_in] input tensor (e.g. the pair representation) Returns: [*, I, J, C_in] output tensor """ if mask is None: # [*, I, J] mask = x.new_ones( x.shape[:-1], ) # Shape annotations assume self.starting. Else, I and J are flipped if not self.starting: x = x.transpose(-2, -3) mask = mask.transpose(-1, -2) # [*, I, J, C_in] x = self.layer_norm(x) # [*, I, 1, 1, J] mask_bias = (self.inf * (mask - 1))[..., :, None, None, :] # [*, H, I, J] triangle_bias = permute_final_dims(self.linear(x), (2, 0, 1)) # [*, 1, H, I, J] triangle_bias = triangle_bias.unsqueeze(-4) biases = [mask_bias, triangle_bias] if chunk_size is not None: x = self._chunk(x, biases, chunk_size) else: x = self.mha(q_x=x, kv_x=x, biases=biases) if not self.starting: x = x.transpose(-2, -3) return x class TriangleAttentionStartingNode(TriangleAttention): """ Implements Algorithm 13. """ __init__ = partialmethod(TriangleAttention.__init__, starting=True) class TriangleAttentionEndingNode(TriangleAttention): """ Implements Algorithm 14. """ __init__ = partialmethod(TriangleAttention.__init__, starting=False)