# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch import torch.nn as nn from typing import Tuple, Optional from functools import partial from .primitives import Linear, LayerNorm from .dropout import DropoutRowwise, DropoutColumnwise from .msa import ( MSARowAttentionWithPairBias, MSAColumnAttention, MSAColumnGlobalAttention, ) from .outer_product_mean import OuterProductMean from .pair_transition import PairTransition from .triangular_attention import ( TriangleAttentionStartingNode, TriangleAttentionEndingNode, ) from .triangular_multiplicative_update import ( TriangleMultiplicationOutgoing, TriangleMultiplicationIncoming, ) from .checkpointing import checkpoint_blocks, get_checkpoint_fn from .tensor_utils import chunk_layer class MSATransition(nn.Module): """ Feed-forward network applied to MSA activations after attention. Implements Algorithm 9 """ def __init__(self, c_m, n): """ Args: c_m: MSA channel dimension n: Factor multiplied to c_m to obtain the hidden channel dimension """ super(MSATransition, self).__init__() self.c_m = c_m self.n = n self.layer_norm = LayerNorm(self.c_m) self.linear_1 = Linear(self.c_m, self.n * self.c_m, init="relu") self.relu = nn.ReLU() self.linear_2 = Linear(self.n * self.c_m, self.c_m, init="final") def _transition(self, m, mask): m = self.linear_1(m) m = self.relu(m) m = self.linear_2(m) * mask return m @torch.jit.ignore def _chunk(self, m: torch.Tensor, mask: torch.Tensor, chunk_size: int, ) -> torch.Tensor: return chunk_layer( self._transition, {"m": m, "mask": mask}, chunk_size=chunk_size, no_batch_dims=len(m.shape[:-2]), ) def forward( self, m: torch.Tensor, mask: Optional[torch.Tensor] = None, chunk_size: Optional[int] = None, ) -> torch.Tensor: """ Args: m: [*, N_seq, N_res, C_m] MSA activation mask: [*, N_seq, N_res, C_m] MSA mask Returns: m: [*, N_seq, N_res, C_m] MSA activation update """ # DISCREPANCY: DeepMind forgets to apply the MSA mask here. if mask is None: mask = m.new_ones(m.shape[:-1]) # [*, N_seq, N_res, 1] mask = mask.unsqueeze(-1) m = self.layer_norm(m) if chunk_size is not None: m = self._chunk(m, mask, chunk_size) else: m = self._transition(m, mask) return m class EvoformerBlockCore(nn.Module): def __init__( self, c_m: int, c_z: int, c_hidden_opm: int, c_hidden_mul: int, c_hidden_pair_att: int, no_heads_msa: int, no_heads_pair: int, transition_n: int, pair_dropout: float, inf: float, eps: float, _is_extra_msa_stack: bool = False, is_multimer: bool = False, ): super(EvoformerBlockCore, self).__init__() self.is_multimer = is_multimer self.msa_transition = MSATransition( c_m=c_m, n=transition_n, ) self.outer_product_mean = OuterProductMean( c_m, c_z, c_hidden_opm, ) self.tri_mul_out = TriangleMultiplicationOutgoing( c_z, c_hidden_mul, ) self.tri_mul_in = TriangleMultiplicationIncoming( c_z, c_hidden_mul, ) self.tri_att_start = TriangleAttentionStartingNode( c_z, c_hidden_pair_att, no_heads_pair, inf=inf, ) self.tri_att_end = TriangleAttentionEndingNode( c_z, c_hidden_pair_att, no_heads_pair, inf=inf, ) self.pair_transition = PairTransition( c_z, transition_n, ) self.ps_dropout_row_layer = DropoutRowwise(pair_dropout) self.ps_dropout_col_layer = DropoutColumnwise(pair_dropout) def forward( self, m: torch.Tensor, z: torch.Tensor, chunk_size: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # DeepMind doesn't mask these transitions in the source, so _mask_trans # should be disabled to better approximate the exact activations of # the original. m = m + self.msa_transition( m, chunk_size=chunk_size ) z = z + self.outer_product_mean( m, chunk_size=chunk_size ) z = z + self.ps_dropout_row_layer(self.tri_mul_out(z)) z = z + self.ps_dropout_row_layer(self.tri_mul_in(z)) z = z + self.ps_dropout_row_layer( self.tri_att_start(z, chunk_size=chunk_size) ) z = z + self.ps_dropout_col_layer( self.tri_att_end(z, chunk_size=chunk_size) ) z = z + self.pair_transition( z, chunk_size=chunk_size ) return m, z class EvoformerBlock(nn.Module): def __init__(self, c_m: int, c_z: int, c_hidden_msa_att: int, c_hidden_opm: int, c_hidden_mul: int, c_hidden_pair_att: int, no_heads_msa: int, no_heads_pair: int, transition_n: int, msa_dropout: float, pair_dropout: float, inf: float, eps: float, is_multimer: bool, ): super(EvoformerBlock, self).__init__() self.msa_att_row = MSARowAttentionWithPairBias( c_m=c_m, c_z=c_z, c_hidden=c_hidden_msa_att, no_heads=no_heads_msa, inf=inf, ) self.msa_att_col = MSAColumnAttention( c_m, c_hidden_msa_att, no_heads_msa, inf=inf, ) self.msa_dropout_layer = DropoutRowwise(msa_dropout) self.core = EvoformerBlockCore( c_m=c_m, c_z=c_z, c_hidden_opm=c_hidden_opm, c_hidden_mul=c_hidden_mul, c_hidden_pair_att=c_hidden_pair_att, no_heads_msa=no_heads_msa, no_heads_pair=no_heads_pair, transition_n=transition_n, pair_dropout=pair_dropout, inf=inf, eps=eps, ) self.outer_product_mean = OuterProductMean( c_m, c_z, c_hidden_opm, ) self.is_multimer = is_multimer def forward(self, m: torch.Tensor, z: torch.Tensor, chunk_size: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: m = m + self.msa_dropout_layer( self.msa_att_row(m, z=z, chunk_size=chunk_size) ) m = m + self.msa_att_col(m, chunk_size=chunk_size) m, z = self.core( m, z, chunk_size=chunk_size, ) return m, z class EvoformerStack(nn.Module): """ Main Evoformer trunk. Implements Algorithm 6. """ def __init__( self, c_m: int, c_z: int, c_hidden_msa_att: int, c_hidden_opm: int, c_hidden_mul: int, c_hidden_pair_att: int, c_s: int, no_heads_msa: int, no_heads_pair: int, no_blocks: int, transition_n: int, msa_dropout: float, pair_dropout: float, blocks_per_ckpt: int, inf: float, eps: float, clear_cache_between_blocks: bool = False, is_multimer: bool = False, **kwargs, ): """ Args: c_m: MSA channel dimension c_z: Pair channel dimension c_hidden_msa_att: Hidden dimension in MSA attention c_hidden_opm: Hidden dimension in outer product mean module c_hidden_mul: Hidden dimension in multiplicative updates c_hidden_pair_att: Hidden dimension in triangular attention c_s: Channel dimension of the output "single" embedding no_heads_msa: Number of heads used for MSA attention no_heads_pair: Number of heads used for pair attention no_blocks: Number of Evoformer blocks in the stack transition_n: Factor by which to multiply c_m to obtain the MSATransition hidden dimension msa_dropout: Dropout rate for MSA activations pair_dropout: Dropout used for pair activations blocks_per_ckpt: Number of Evoformer blocks in each activation checkpoint clear_cache_between_blocks: Whether to clear CUDA's GPU memory cache between blocks of the stack. Slows down each block but can reduce fragmentation """ super(EvoformerStack, self).__init__() self.blocks_per_ckpt = blocks_per_ckpt self.clear_cache_between_blocks = clear_cache_between_blocks self.blocks = nn.ModuleList() for _ in range(no_blocks): block = EvoformerBlock( c_m=c_m, c_z=c_z, c_hidden_msa_att=c_hidden_msa_att, c_hidden_opm=c_hidden_opm, c_hidden_mul=c_hidden_mul, c_hidden_pair_att=c_hidden_pair_att, no_heads_msa=no_heads_msa, no_heads_pair=no_heads_pair, transition_n=transition_n, msa_dropout=msa_dropout, pair_dropout=pair_dropout, inf=inf, eps=eps, is_multimer=is_multimer, ) self.blocks.append(block) self.linear = Linear(c_m, c_s) def forward(self, m: torch.Tensor, z: torch.Tensor, msa_mask: torch.Tensor, pair_mask: torch.Tensor, chunk_size: int, _mask_trans: bool = True, ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: """ Args: m: [*, N_seq, N_res, C_m] MSA embedding z: [*, N_res, N_res, C_z] pair embedding msa_mask: [*, N_seq, N_res] MSA mask pair_mask: [*, N_res, N_res] pair mask Returns: m: [*, N_seq, N_res, C_m] MSA embedding z: [*, N_res, N_res, C_z] pair embedding s: [*, N_res, C_s] single embedding (or None if extra MSA stack) """ blocks = [ partial( b, msa_mask=msa_mask, pair_mask=pair_mask, chunk_size=chunk_size, _mask_trans=_mask_trans, ) for b in self.blocks ] if(self.clear_cache_between_blocks): def block_with_cache_clear(block, *args): torch.cuda.empty_cache() return block(*args) blocks = [partial(block_with_cache_clear, b) for b in blocks] m, z = checkpoint_blocks( blocks, args=(m, z), blocks_per_ckpt=self.blocks_per_ckpt if self.training else None, ) s = self.linear(m[..., 0, :, :]) return m, z, s