#!/usr/bin/env python # -*- encoding: utf-8 -*- import os IMG_SIZE = 224 BATCH_SIZE = 256 NUM_EPOCHS = 100 model = dict( type='VanillaResNet', block_type='ResNetBottleneck', layers=[3, 4, 6, 3], num_cls=10 ) train_data = dict( dataset=dict( type='CIFAR10Dataset', root=os.environ['DATA'], transform_pipeline=[ dict(type='Resize', size=IMG_SIZE), dict(type='RandomCrop', size=IMG_SIZE, padding=4), dict(type='RandomHorizontalFlip'), dict(type='ToTensor'), dict(type='Normalize', mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]), ] ), dataloader=dict( batch_size=BATCH_SIZE, pin_memory=True, shuffle=True, ) ) test_data = dict( dataset=dict( type='CIFAR10Dataset', root=os.environ['DATA'], train=False, transform_pipeline=[ dict(type='Resize', size=IMG_SIZE), dict(type='ToTensor'), dict(type='Normalize', mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010] ), ] ), dataloader=dict( batch_size=BATCH_SIZE, pin_memory=True, ) ) parallelization = dict( pipeline=1, tensor=dict(size=1, mode=None), ) optimizer = dict( type='Adam', lr=0.01 ) loss = dict( type='CrossEntropyLoss' ) from colossalai.engine import AMP_TYPE fp16 = dict( mode=AMP_TYPE.APEX, opt_level='O2', )