from typing import List, Optional, Tuple, Union import torch import torch.distributed as dist from torch.distributed import ProcessGroup from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from transformers.models.falcon.modeling_falcon import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, build_alibi_tensor, ) from transformers.utils import logging from colossalai.pipeline.stage_manager import PipelineStageManager from colossalai.shardformer.shard import ShardConfig def build_falcon_alibi_tensor_fn(process_group: ProcessGroup) -> torch.Tensor: def build_falcon_alibi_tensor( self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype ) -> torch.Tensor: """ Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value `softmax(l+a) = softmax(l)`. Based on https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. Args: Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) attention_mask (`torch.Tensor`): Token-wise attention mask, this should be of shape (batch_size, max_seq_len). num_heads (`int`, *required*): number of heads dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): dtype of the output tensor """ import math if dist.is_initialized(): world_size = dist.get_world_size(process_group) num_heads = num_heads * world_size batch_size, seq_length = attention_mask.shape closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) base = torch.tensor( 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) slopes = torch.pow(base, powers) if closest_power_of_2 != num_heads: extra_base = torch.tensor( 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32, ) num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) extra_powers = torch.arange( 1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32 ) slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) # Note: alibi will added to the attention bias that will be applied to the query, key product of attention # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) # => the query_length dimension will then be broadcasted correctly # This is more or less identical to T5's relative position bias: # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] alibi = slopes[..., None] * arange_tensor if dist.is_initialized(): num_heads_per_rank = int(num_heads / dist.get_world_size(process_group)) offset = dist.get_rank(process_group) * num_heads_per_rank alibi = alibi.view(batch_size, num_heads, 1, seq_length) alibi = alibi[:, offset : num_heads_per_rank + offset, :, :] return alibi.reshape(batch_size * num_heads_per_rank, 1, seq_length).to(dtype) else: return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) return build_falcon_alibi_tensor def get_tp_falcon_decoder_layer_forward(): from transformers.models.falcon.modeling_falcon import FalconDecoderLayer, dropout_add def forward( self: FalconDecoderLayer, hidden_states: torch.Tensor, alibi: Optional[torch.Tensor], attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, ): residual = hidden_states if self.config.new_decoder_architecture: attention_layernorm_out = self.ln_attn(hidden_states) mlp_layernorm_out = self.ln_mlp(hidden_states) else: attention_layernorm_out = self.input_layernorm(hidden_states) # Self attention. attn_outputs = self.self_attention( attention_layernorm_out, layer_past=layer_past, attention_mask=attention_mask, alibi=alibi, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attention_output = attn_outputs[0] if not self.config.new_decoder_architecture: if self.config.parallel_attn: mlp_layernorm_out = attention_layernorm_out else: residual = dropout_add( attention_output, residual, self.config.attention_dropout, training=self.training ) mlp_layernorm_out = self.post_attention_layernorm(residual) outputs = attn_outputs[1:] # MLP. mlp_output = self.mlp(mlp_layernorm_out) if self.config.new_decoder_architecture or self.config.parallel_attn: mlp_output = mlp_output + attention_output output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training) if use_cache: outputs = (output,) + outputs else: outputs = (output,) + outputs[1:] return outputs # hidden_states, present, attentions return forward def get_falcon_flash_attention_forward(): try: from xformers.ops import memory_efficient_attention as me_attention except: raise ImportError("Error: xformers module is not installed. Please install it to use flash attention.") from transformers.models.falcon.modeling_falcon import FalconAttention def forward( self: FalconAttention, hidden_states: torch.Tensor, alibi: Optional[torch.Tensor], attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, ): fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, query_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, query_length, self.head_dim) key_layer = key_layer.transpose(1, 2).reshape( batch_size * num_kv_heads, query_length, self.head_dim, ) value_layer = value_layer.transpose(1, 2).reshape(batch_size * num_kv_heads, query_length, self.head_dim) past_kv_length = 0 if layer_past is None else layer_past[0].shape[1] query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length) if layer_past is not None: past_key, past_value = layer_past # concatenate along seq_length dimension: # - key: [batch_size * self.num_heads, kv_length, head_dim] # - value: [batch_size * self.num_heads, kv_length, head_dim] key_layer = torch.cat((past_key, key_layer), dim=1) value_layer = torch.cat((past_value, value_layer), dim=1) _, kv_length, _ = key_layer.shape if use_cache: present = (key_layer, value_layer) else: present = None attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, float("-1e9")).to(query_layer.dtype) query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim).transpose(1, 2).contiguous() key_layer_ = key_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim).transpose(1, 2).contiguous() value_layer_ = value_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim).transpose(1, 2).contiguous() if alibi is not None: attention_mask_float = ( attention_mask_float + alibi.view(batch_size, self.num_heads, 1, kv_length) * self.beta ) batch_size, src_len = query_layer_.size()[0], query_layer_.size()[1] tgt_len = key_layer_.size()[1] attention_mask_float = attention_mask_float.expand(batch_size, self.num_heads, src_len, tgt_len).contiguous() context_layer = me_attention( query_layer_, key_layer_, value_layer_, attn_bias=attention_mask_float, scale=self.inv_norm_factor, p=self.attention_dropout.p, ) batch_size, seq_length, _, _ = context_layer.shape context_layer = context_layer.reshape(batch_size, seq_length, -1) output_tensor = self.dense(context_layer) return output_tensor, present return forward class FalconPipelineForwards: """ This class serves as a micro library for falcon pipeline forwards. """ @staticmethod def falcon_model_forward( self: FalconModel, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, stage_manager: Optional[PipelineStageManager] = None, hidden_states: Optional[torch.FloatTensor] = None, stage_index: Optional[List[int]] = None, shard_config: ShardConfig = None, ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: logger = logging.get_logger(__name__) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if use_cache: logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") use_cache = False if past_key_values is not None: logger.warning_once("past_key_values is not supported for pipeline models at the moment.") past_key_values = None return_dict = return_dict if return_dict is not None else self.config.use_return_dict if past_key_values is None: past_key_values = tuple([None] * len(self.h)) else: past_key_values = self._convert_to_rw_cache(past_key_values) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape batch_size x num_heads x N x N # head_mask has shape n_layer x batch x num_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) # case: First stage of training if stage_manager.is_first_stage(): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) hidden_states = inputs_embeds else: input_shape = hidden_states.shape[:-1] batch_size, seq_length = input_shape presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None # Compute alibi tensor: check build_alibi_tensor documentation past_key_values_length = 0 if past_key_values[0] is not None: past_key_values_length = past_key_values[0][0].shape[1] # 1 because RW-cache, not standard format if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=hidden_states.device) else: attention_mask = attention_mask.to(hidden_states.device) if self.use_alibi: alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) else: alibi = None causal_mask = self._prepare_attn_mask( attention_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length, ) start_idx, end_idx = stage_index[0], stage_index[1] for i, (block, layer_past) in enumerate( zip(self.h[start_idx:end_idx], past_key_values[start_idx:end_idx]), start=start_idx ): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i], ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) if stage_manager.is_last_stage(): # Add last hidden state hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if presents is not None: presents = self._convert_cache_to_standard_format(presents, batch_size) if stage_manager.is_last_stage(): if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) else: # always return dict for imediate stage return {"hidden_states": hidden_states} @staticmethod def falcon_for_causal_lm_forward( self: FalconForCausalLM, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, stage_manager: Optional[PipelineStageManager] = None, hidden_states: Optional[torch.FloatTensor] = None, stage_index: Optional[List[int]] = None, shard_config: ShardConfig = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ logger = logging.get_logger(__name__) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if output_attentions: logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") output_attentions = False if output_hidden_states: logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") output_hidden_states = False transformer_outputs = FalconPipelineForwards.falcon_model_forward( self.transformer, input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, stage_manager=stage_manager, hidden_states=hidden_states, stage_index=stage_index, shard_config=shard_config, ) past_key_values = None if stage_manager.is_last_stage(): hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() batch_size, seq_length, vocab_size = shift_logits.shape # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct( shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) ) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) else: hidden_states = transformer_outputs.get("hidden_states") return {"hidden_states": hidden_states} @staticmethod def falcon_for_sequence_classification_forward( self: FalconForSequenceClassification, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, stage_manager: Optional[PipelineStageManager] = None, hidden_states: Optional[torch.FloatTensor] = None, stage_index: Optional[List[int]] = None, shard_config: ShardConfig = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ logger = logging.get_logger(__name__) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if output_attentions: logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") output_attentions = False if output_hidden_states: logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") output_hidden_states = False transformer_outputs = FalconPipelineForwards.falcon_model_forward( self.transformer, input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, stage_manager=stage_manager, hidden_states=hidden_states, stage_index=stage_index, shard_config=shard_config, ) past_key_values = None if stage_manager.is_last_stage(): batch_size = hidden_states.shape[0] hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1).to(logits.device) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) else: hidden_states = transformer_outputs.get("hidden_states") return {"hidden_states": hidden_states} @staticmethod def falcon_for_token_classification_forward( self: FalconForTokenClassification, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, stage_manager: Optional[PipelineStageManager] = None, hidden_states: Optional[torch.FloatTensor] = None, stage_index: Optional[List[int]] = None, shard_config: ShardConfig = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ logger = logging.get_logger(__name__) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if output_attentions: logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") output_attentions = False if output_hidden_states: logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") output_hidden_states = False transformer_outputs = FalconPipelineForwards.falcon_model_forward( self.transformer, input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, stage_manager=stage_manager, hidden_states=hidden_states, stage_index=stage_index, shard_config=shard_config, ) past_key_values = None if stage_manager.is_last_stage(): hidden_states = transformer_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: batch_size, seq_length = labels.shape loss_fct = CrossEntropyLoss() loss = loss_fct( logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) ) if not return_dict: output = (logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) else: hidden_states = transformer_outputs.get("hidden_states") return {"hidden_states": hidden_states} @staticmethod def falcon_for_question_answering_forward( self: FalconForQuestionAnswering, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, stage_manager: Optional[PipelineStageManager] = None, hidden_states: Optional[torch.FloatTensor] = None, stage_index: Optional[List[int]] = None, shard_config: ShardConfig = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ logger = logging.get_logger(__name__) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if output_attentions: logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") output_attentions = False if output_hidden_states: logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") output_hidden_states = False outputs = FalconPipelineForwards.falcon_model_forward( self.transformer, input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, stage_manager=stage_manager, hidden_states=hidden_states, stage_index=stage_index, shard_config=shard_config, ) if stage_manager.is_last_stage(): sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) else: hidden_states = outputs.get("hidden_states") return {"hidden_states": hidden_states}