import click from .run import launch_multi_processes from colossalai.context import Config @click.command(help="Launch distributed training on a single node or multiple nodes", context_settings=dict(ignore_unknown_options=True)) @click.option("-H", "-host", "--host", type=str, default=None, help="the list of machines to launch") @click.option("--hostfile", type=str, default=None, help="Hostfile path that defines the device pool available to the job (e.g. worker-name:number of slots)") @click.option( "--include", type=str, default=None, help= "Specify computing devices to use during execution. String format is NODE_SPEC@NODE_SPEC where NODE_SPEC=:" ) @click.option( "--exclude", type=str, default=None, help= "Specify computing devices to NOT use during execution. Mutually exclusive with --include. Formatting is the same as --include." ) @click.option("--num_nodes", type=int, default=-1, help="Total number of worker nodes to use.") @click.option("--nproc_per_node", type=int, default=-1, help="Number of GPUs to use on each node.") @click.option("--master_port", type=int, default=29500, help="(optional) Port used by PyTorch distributed for communication during distributed training.") @click.option("--master_addr", type=str, default="127.0.0.1", help="(optional) IP address of node 0, will be inferred via 'hostname -I' if not specified.") @click.option( "--launcher", type=click.Choice(['torch', 'openmpi', 'slurm'], case_sensitive=False), default="torch", help="(optional) choose launcher backend for multi-node training. Options currently include PDSH, OpenMPI, SLURM.") @click.option("--launcher_args", type=str, default=None, help="(optional) pass launcher specific arguments as a single quoted argument.") @click.argument("user_script", type=str) @click.argument('user_args', nargs=-1) def run(host: str, hostfile: str, num_nodes: int, nproc_per_node: int, include: str, exclude: str, master_addr: str, master_port: int, launcher: str, launcher_args: str, user_script: str, user_args: str): """ To launch multiple processes on a single node or multiple nodes via command line. Usage:: # run on the current node with all available GPUs colossalai run train.py # run with only 2 GPUs on the current node colossalai run --nprocs_per_node 2 train.py # run on two nodes colossalai run --host , train.py # run with hostfile colossalai run --hostfile train.py """ args_dict = locals() args = Config(args_dict) args.user_args = list(args.user_args) launch_multi_processes(args)