from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.testing import parameterize, rerun_on_exception from colossalai.utils import free_port from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy) from colossalai.zero.sharded_model import ShardedModelV2 from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16 from colossalai.zero.sharded_model.utils import col_model_deepcopy from tests.components_to_test.registry import non_distributed_component_funcs from colossalai.engine.gradient_handler import MoeGradientHandler from colossalai.context import MOE_CONTEXT from colossalai.testing import assert_equal_in_group from tests.test_zero_data_parallel.common import CONFIG, check_grads_padding, run_fwd_bwd from tests.test_moe.test_moe_zero_init import MoeModel @parameterize("enable_autocast", [False]) @parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) def run_model_test(enable_autocast, shard_strategy_class): shard_strategy = shard_strategy_class() get_components_func = non_distributed_component_funcs.get_callable('no_leaf_module') _, train_dataloader, _, _, criterion = get_components_func() rm_torch_payload_on_the_fly = False with ZeroInitContext(target_device=torch.cuda.current_device(), shard_strategy=shard_strategy, shard_param=True, rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly): zero_model = MoeModel() zero_model = ShardedModelV2(zero_model, shard_strategy, use_memory_tracer=True) # check whether parameters are identical in ddp for name, p in zero_model.named_parameters(): if not p.colo_attr.param_is_sharded and p.is_replicated: assert_equal_in_group(p.data) model = MoeModel().half() col_model_deepcopy(zero_model, model) model = model.cuda() grad_handler = MoeGradientHandler(model) for i, (data, label) in enumerate(train_dataloader): if i > 5: break data, label = cast_tensor_to_fp16(data).cuda(), label.cuda() run_fwd_bwd(model, data, label, criterion, enable_autocast) run_fwd_bwd(zero_model, data, label, criterion, enable_autocast) grad_handler.handle_gradient() check_grads_padding(model, zero_model, loose=True) def run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') MOE_CONTEXT.setup(seed=42) MOE_CONTEXT.reset_loss() run_model_test() @pytest.mark.dist @pytest.mark.parametrize("world_size", [2]) @rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*") def test_moe_zero_model(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_moe_zero_model(world_size=2)