#!/usr/bin/env python # -*- encoding: utf-8 -*- import math import torch.distributed as dist from colossalai.global_variables import tensor_parallel_env as env from colossalai.registry import DIST_GROUP_INITIALIZER from ..parallel_mode import ParallelMode from .process_group_initializer import ProcessGroupInitializer def _check_depth_env_var(depth): # check global variable env_depth = env.depth_3d if env_depth: assert int(env_depth) == depth, \ 'DEPTH_3D has been set in the current environment and ' \ 'does not match with the value passed to this initialized' else: env.depth_3d = depth class Initializer_3D_Input(ProcessGroupInitializer): """3D tensor parallel initialization among input. Args: num_group (int): The number of all tensor groups. depth (int): Depth of 3D parallelism. rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, num_group: int, depth: int, *args): super().__init__(*args) self.num_group = num_group self.depth = depth def init_dist_group(self): """Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu. Returns: Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode): 3D tensor parallelism's information among input in a tuple. """ local_rank = None ranks_in_group = None process_group = None cpu_group = None group_world_size = None mode = ParallelMode.PARALLEL_3D_INPUT env.input_group_3d = mode for h in range(self.num_group): for i in range(self.depth): for k in range(self.depth): ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for j in range(self.depth)] group = dist.new_group(ranks) group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group cpu_group = group_cpu ranks_in_group = ranks return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode class Initializer_3D_Weight(ProcessGroupInitializer): """3D tensor parallel initialization among weight. Args: num_group (int): The number of all tensor groups. depth (int): Depth of 3D parallelism. rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, num_group: int, depth: int, *args): super().__init__(*args) self.num_group = num_group self.depth = depth def init_dist_group(self): """Initialize 3D tensor parallel groups among weight, and assign local_ranks and groups to each gpu. Returns: Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode): 3D tensor parallelism's information among weight in a tuple. """ local_rank = None ranks_in_group = None process_group = None cpu_group = None group_world_size = None mode = ParallelMode.PARALLEL_3D_WEIGHT env.weight_group_3d = mode for h in range(self.num_group): for k in range(self.depth): for j in range(self.depth): ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for i in range(self.depth)] group = dist.new_group(ranks) group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group cpu_group = group_cpu ranks_in_group = ranks return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode class Initializer_3D_Output(ProcessGroupInitializer): """3D tensor parallel initialization among output. Args: num_group (int): The number of all tensor groups. depth (int): Depth of 3D parallelism. rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, num_group: int, depth: int, *args): super().__init__(*args) self.num_group = num_group self.depth = depth def init_dist_group(self): """Initialize 3D tensor parallel groups among output, and assign local_ranks and groups to each gpu. Returns: Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode): 3D tensor parallelism's information among output in a tuple. """ local_rank = None ranks_in_group = None process_group = None cpu_group = None group_world_size = None mode = ParallelMode.PARALLEL_3D_OUTPUT env.output_group_3d = mode for h in range(self.num_group): for i in range(self.depth): for j in range(self.depth): ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for k in range(self.depth)] group = dist.new_group(ranks) group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group cpu_group = group_cpu ranks_in_group = ranks return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode class Initializer_3D_InputxWeight(ProcessGroupInitializer): """3D tensor parallel initialization among input. Args: num_group (int): The number of all tensor groups. depth (int): Depth of 3D parallelism. rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, num_group: int, depth: int, *args): super().__init__(*args) self.num_group = num_group self.depth = depth def init_dist_group(self): """Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu. Returns: Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode): 3D tensor parallelism's information among input in a tuple. """ local_rank = None ranks_in_group = None process_group = None cpu_group = None group_world_size = None mode = ParallelMode.PARALLEL_3D_INPUT_X_WEIGHT env.input_x_weight_group_3d = mode for h in range(self.num_group): for k in range(self.depth): ranks = [ h * self.depth**3 + i + self.depth * (j + self.depth * k) for j in range(self.depth) for i in range(self.depth) ] group = dist.new_group(ranks) group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group cpu_group = group_cpu ranks_in_group = ranks return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode class Initializer_3D_OutputxWeight(ProcessGroupInitializer): """3D tensor parallel initialization among input. Args: num_group (int): The number of all tensor groups. depth (int): Depth of 3D parallelism. rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, num_group: int, depth: int, *args): super().__init__(*args) self.num_group = num_group self.depth = depth def init_dist_group(self): """Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu. Returns: Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode): 3D tensor parallelism's information among input in a tuple. """ local_rank = None ranks_in_group = None process_group = None cpu_group = None group_world_size = None mode = ParallelMode.PARALLEL_3D_OUTPUT_X_WEIGHT env.output_x_weight_group_3d = mode for h in range(self.num_group): for j in range(self.depth): ranks = [ h * self.depth**3 + i + self.depth * (j + self.depth * k) for k in range(self.depth) for i in range(self.depth) ] group = dist.new_group(ranks) group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group cpu_group = group_cpu ranks_in_group = ranks return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode @DIST_GROUP_INITIALIZER.register_module class Initializer_3D(ProcessGroupInitializer): """Serve as the single entry point to 3D parallel initialization. Args: rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, *args): super().__init__(*args) self.num_group = self.world_size // self.tensor_parallel_size self.depth = round(math.pow(self.tensor_parallel_size, 1 / 3)) assert self.tensor_parallel_size == self.depth ** 3, \ f'3D depth ({self.depth}) if not cube root of tensor parallel size ({self.tensor_parallel_size})' _check_depth_env_var(self.depth) self.input_initializer = Initializer_3D_Input(self.num_group, self.depth, *args) self.weight_initializer = Initializer_3D_Weight(self.num_group, self.depth, *args) self.output_initializer = Initializer_3D_Output(self.num_group, self.depth, *args) self.input_x_weight_initializer = Initializer_3D_InputxWeight(self.num_group, self.depth, *args) self.output_x_weight_initializer = Initializer_3D_OutputxWeight(self.num_group, self.depth, *args) def init_dist_group(self): """Initialize 3D tensor parallel groups, and assign local_ranks and groups to each gpu. Returns: List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]: Whole 3D tensor parallelism's information in a list of tuples. """ parallel_setting = [ self.input_initializer.init_dist_group(), self.weight_initializer.init_dist_group(), self.output_initializer.init_dist_group(), self.input_x_weight_initializer.init_dist_group(), self.output_x_weight_initializer.init_dist_group() ] return parallel_setting