#!/usr/bin/env python # -*- encoding: utf-8 -*- from torch import distributed as dist from colossalai.registry import DIST_GROUP_INITIALIZER from .process_group_initializer import ProcessGroupInitializer from ..parallel_mode import ParallelMode @DIST_GROUP_INITIALIZER.register_module class Initializer_Data(ProcessGroupInitializer): '''A ProcessGroupInitializer for data parallelism. ''' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.num_data_parallel_group = self.world_size // self.data_parallel_size def init_dist_group(self): '''Initialize data parallel groups, and assign local_ranks and groups to each gpu. :return: data parallelism's information :rtype: tuple (local_rank, group_world_size, process_group, ranks_in_group, mode) ''' local_rank = None ranks_in_group = None process_group = None group_world_size = None mode = ParallelMode.DATA for i in range(self.num_data_parallel_group): ranks = [i + j * self.num_data_parallel_group for j in range(self.data_parallel_size)] group = dist.new_group(ranks) if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group ranks_in_group = ranks return local_rank, group_world_size, process_group, ranks_in_group, mode