# 2.5D Tensor Parallelism Author: Zhengda Bian, Yongbin Li **Prerequisite** - [Define Your Configuration](../basics/define_your_config.md) - [Configure Parallelization](../basics/configure_parallelization.md) - [1D Tensor Parallelism](./1D_tensor_parallel.md) - [2D Tensor Parallelism](./2D_tensor_parallel.md) **Example Code** - [ColossalAI-Examples - 2.5D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md) **Related Paper** - [2.5-dimensional distributed model training](https://arxiv.org/pdf/2105.14500.pdf) ## Introduction Compared with 1D tensor parallelism, 2D parallelism reduces the memory cost, but may introduce more communication. Therefore, a [2.5D tensor parallelism algorithm](https://arxiv.org/pdf/2105.14500.pdf) was proposed based on 2.5D SUMMA to reduce communication by using more devices. Let's still take a linear layer $Y = XA$ as an example. Given $P=q \times q \times d$ processors (necessary condition), e.g. $q=d=2$, we split the input $X$ into $d\times q$ rows and $q$ columns as $$ \left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \\ X_{20} & X_{21} \\ X_{30} & X_{31}\end{matrix} \right], $$ which can be reshaped into $d$ layers as $$ \left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{matrix} \right] \text{~and~}\left[\begin{matrix} X_{20} & X_{21} \\ X_{30} & X_{31} \end{matrix} \right]. $$ Also, the weight $A$ is split into $$ \left[\begin{matrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{matrix} \right]. $$ For each layer of $X$, we use the SUMMA algorithm to multiply $X$ and $A$. Then, we have the output $$ \left[\begin{matrix} Y_{00}=X_{00}A_{00}+X_{01}A_{10} & Y_{01}=X_{00}A_{01}+X_{01}A_{11} \\ Y_{10}=X_{10}A_{00}+X_{11}A_{10} & Y_{11}=X_{10}A_{01}+X_{11}A_{11} \end{matrix} \right] \text{~and~} $$ $$ \left[\begin{matrix} Y_{20}=X_{20}A_{00}+X_{21}A_{10} & Y_{21}=X_{20}A_{01}+X_{21}A_{11} \\ Y_{30}=X_{30}A_{00}+X_{31}A_{10} & Y_{31}=X_{30}A_{01}+X_{31}A_{11} \end{matrix} \right]. $$ ## Efficiency Given $P=q \times q \times d$ processors, we present the theoretical computation and memory cost, as well as the communication cost based on the ring algorithm in both the forward and backward pass of 2.5D tensor parallelism. | Computation | Memory (parameters) | Memory (activations) | Communication (bandwidth) | Communication (latency) | | :-: | :-: | :-: | :-: | :-: | | $O(1/dq^2)$ | $O(1/q^2)$ | $O(1/dq^2)$ | $\small O(3(q-1)(d+1)/dq)$ | $O(6(q-1))$ | ## Usage Currently the newest version of ColossalAI doesn't support 2.5D tensor parallelism, but this feature will be integrated into `Shardformer` in future releases. For more details about ideas and usages of `Shardformer`, please refer to [Shardformer Doc](./shardformer.md). For users of older version of ColossalAI, please refer to [ColossalAI-Examples - 2.5D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md).