from copy import deepcopy import numpy as np import pytest import torch from colossalai.testing import DummyDataloader, clear_cache_before_run from colossalai.zero.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer from tests.kit.model_zoo import model_zoo, run_fwd_bwd @pytest.mark.skip("this is not used") @clear_cache_before_run() def test_runtime_mem_tracer(): test_models = ["gpt2", "bert", "simple_net", "repeated_computed_layers", "nested_model", "albert"] for model_name in test_models: model_builder, data_gen_fn, output_transform_fn, *_ = next( iter(model_zoo.get_sub_registry(model_name).values()) ) model = model_builder().cuda() model_bk = deepcopy(model) runtime_mem_tracer = RuntimeMemTracer(model) train_dataloader = DummyDataloader(data_gen_fn) for i, data in enumerate(train_dataloader): if i > 1: break data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()} run_fwd_bwd(runtime_mem_tracer, data, output_transform_fn, optimizer=runtime_mem_tracer) for p1, p2 in zip(model_bk.parameters(), model.parameters()): torch.allclose(p1.to(torch.half), p2) non_model_data_list = runtime_mem_tracer._memstats.non_model_data_list("cuda") cuda_non_model_data_list = np.array(non_model_data_list) / 1024**2 print("cuda_non_model_data_list", len(cuda_non_model_data_list)) print(non_model_data_list) cnt1 = 0 for p in runtime_mem_tracer.parameters_in_runtime_order(): cnt1 += 1 cnt2 = 0 for p in model.parameters(): cnt2 += 1 assert cnt2 == cnt1, f"visited param number {cnt1} vs real param number {cnt2}" del model if __name__ == "__main__": test_runtime_mem_tracer()