{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import torch\n", "import torch.nn as nn" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Linear(in_features=10, out_features=5, bias=False) 50\n", "Linear(in_features=5, out_features=10, bias=False) 50\n", "Linear(in_features=10, out_features=10, bias=False) 100\n" ] } ], "source": [ "class Toy(nn.Module):\n", " \n", " def __init__(self):\n", " super(Toy, self).__init__()\n", " self.fc1 = nn.Linear(10,5, bias=False)\n", " self.m3 = nn.Sequential(nn.Linear(5, 10, bias=False), nn.Linear(10,10, bias=False))\n", "\n", "t = Toy()\n", "for mod in t.modules():\n", " for p in mod.parameters(recurse=False):\n", " print(mod, p.numel())" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([5, 10]) 50\n", "torch.Size([10, 5]) 50\n", "torch.Size([10, 10]) 100\n" ] } ], "source": [ "for p in t.parameters():\n", " print(p.shape, p.numel())" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'224'" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "conf_str = torch.__config__.parallel_info()\n", "inter_str = conf_str.split(\"hardware_concurrency() : \")[1]\n", "max_concurrency = inter_str.split(\"\\n\")[0]\n", "max_concurrency" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 0\n", "0 1\n", "0 2\n", "1 0\n", "1 1\n", "1 2\n" ] } ], "source": [ "for i in range(3):\n", " for j in range(3):\n", " print(i, j)\n", " if i == 1 and j == 2:break\n", " else:\n", " continue\n", " break" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "colossalai-py310", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 2 }