import copy from functools import partial from types import MethodType import pytest import torch import torch.distributed as dist import torch.nn as nn import colossalai from colossalai.cluster import ProcessGroupMesh from colossalai.interface import OptimizerWrapper from colossalai.pipeline.schedule.one_f_one_b import OneForwardOneBackwardSchedule from colossalai.pipeline.stage_manager import PipelineStageManager from colossalai.testing import rerun_if_address_is_in_use, spawn from colossalai.testing.random import seed_all DIM = 8 NUM_LAYER = 8 class MlpModel(nn.Module): def __init__(self): super().__init__() self.layers = nn.ModuleList([nn.Linear(DIM, DIM) for _ in range(NUM_LAYER)]) def forward(self, x): for layer in self.layers: x = layer(x) return x def pp_linear_fwd( forward, data: torch.Tensor = None, input_obj: torch.Tensor = None, stage_mgr: PipelineStageManager = None, ): if stage_mgr.is_first_stage(): return {"input_obj": forward(data)} elif stage_mgr.is_last_stage(): return forward(input_obj) else: return {"input_obj": forward(input_obj)} def examine_pp(num_microbatch: int, batch_size: int): """ This test is to examine the correctness of 1F1B, compared with torch. Be aware it contains some hardcodes. """ world_size = dist.get_world_size() dist.get_rank() seed_all(1453) # create models torch_model = MlpModel().cuda() pp_model = copy.deepcopy(torch_model).cuda() pg_mesh = ProcessGroupMesh(world_size) stage_manager = PipelineStageManager(pg_mesh, pipeline_axis=0) schedule = OneForwardOneBackwardSchedule(stage_manager, num_microbatches=num_microbatch) rank = dist.get_rank() sharded_model = torch.nn.ModuleList() num_local_layer = NUM_LAYER // world_size for idx, sub_model in enumerate(pp_model.layers): if idx // num_local_layer == rank: sharded_model.append(sub_model.cuda()) assert len(sharded_model) == num_local_layer def custom_fwd(self, x): for layer in self._modules.values(): x = layer(x) return x sharded_model._forward = MethodType(custom_fwd, sharded_model) sharded_model.forward = MethodType( partial( pp_linear_fwd, stage_mgr=stage_manager, ), sharded_model._forward, ) # create optimizer torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1) pp_optimizer = OptimizerWrapper(torch.optim.SGD(sharded_model.parameters(), lr=1)) # create seed_all(1453) input_list = [torch.rand(batch_size, DIM).cuda()] dist.all_reduce(input_list[0]) criterion = lambda x, *arg, **kwargs: (x * x).mean() # forward and backward torch_output = torch_model(input_list[0]) torch_loss = criterion(torch_output) torch_loss.backward() pp_ret = schedule.forward_backward_step( sharded_model, iter(input_list), criterion, pp_optimizer, return_loss=True ) # check loss if stage_manager.is_last_stage(): assert torch.allclose(torch_loss, pp_ret["loss"]) # check gradients for i in range(len(sharded_model)): idx = rank * num_local_layer + i assert torch.allclose(torch_model.layers[idx].weight.grad, sharded_model[i].weight.grad) assert torch.allclose(torch_model.layers[idx].bias.grad, sharded_model[i].bias.grad) # step torch_optimizer.step() pp_optimizer.step() pp_optimizer.zero_grad() # check updated param for i in range(len(sharded_model)): idx = rank * num_local_layer + i assert torch.allclose(torch_model.layers[idx].weight, sharded_model[i].weight) assert torch.allclose(torch_model.layers[idx].bias, sharded_model[i].bias) # forward only with torch.no_grad(): torch_output = torch_model(input_list[0]) torch_loss = criterion(torch_output) pp_ret = schedule.forward_backward_step( sharded_model, iter(input_list), criterion, pp_optimizer, return_loss=True ) if stage_manager.is_last_stage(): assert torch.allclose(torch_loss, pp_ret["loss"]) for layer in sharded_model: if layer.weight.grad is None: assert layer.weight.grad is None and layer.bias.grad is None else: assert torch.allclose(layer.weight.grad, torch.zeros_like(layer.weight.grad)) assert torch.allclose(layer.bias.grad, torch.zeros_like(layer.bias.grad)) def run_dist( rank: int, world_size: int, port: int, num_microbatch: int, batch_size: int, ): colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost") examine_pp(num_microbatch, batch_size) @pytest.mark.dist @pytest.mark.parametrize("num_microbatch", [4, 6]) @pytest.mark.parametrize("batch_size", [12]) @pytest.mark.parametrize("world_size", [2, 4]) @rerun_if_address_is_in_use() def test_pp(num_microbatch: int, batch_size: int, world_size: int): assert NUM_LAYER % world_size == 0 spawn( run_dist, world_size, num_microbatch=num_microbatch, batch_size=batch_size, ) if __name__ == "__main__": test_pp(num_microbatch=4, batch_size=4, world_size=4)