# This test checks adam kernels # Baseline is pure fp32 torch adam optimizer import math from abc import abstractmethod from typing import Type import pytest import torch from torch import Tensor from colossalai.accelerator import get_accelerator from colossalai.utils import multi_tensor_applier _FUSED_ALLOWED_P_G_TYPES = [ (torch.float, torch.half), (torch.float, torch.float), (torch.half, torch.half), (torch.float, torch.bfloat16), (torch.bfloat16, torch.bfloat16), ] _CPU_ALLOWED_P_G_TYPES = [ (torch.float, torch.half), (torch.float, torch.float), (torch.half, torch.half), ] class AdamKernel: def __init__(self, lr: float, beta1: float, beta2: float, eps: float, weight_decay: float, use_adamw: bool) -> None: self.lr = lr self.beta1 = beta1 self.beta2 = beta2 self.eps = eps self.weight_decay = weight_decay self.use_adamw = use_adamw @abstractmethod def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor): pass class TorchAdamKernel(AdamKernel): def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor): bias_correction1 = 1 - self.beta1**step bias_correction2 = 1 - self.beta2**step if self.weight_decay != 0: if self.use_adamw: # Perform stepweight decay param.mul_(1 - self.lr * self.weight_decay) else: grad = grad.add(param, alpha=self.weight_decay) # Decay the first and second moment running average coefficient exp_avg.mul_(self.beta1).add_(grad, alpha=1 - self.beta1) exp_avg_sq.mul_(self.beta2).addcmul_(grad, grad, value=1 - self.beta2) denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(self.eps) step_size = self.lr / bias_correction1 param.addcdiv_(exp_avg, denom, value=-step_size) class FusedAdamKernel(AdamKernel): def __init__(self, lr: float, beta1: float, beta2: float, eps: float, weight_decay: float, use_adamw: bool) -> None: super().__init__(lr, beta1, beta2, eps, weight_decay, use_adamw) from colossalai.kernel.kernel_loader import FusedOptimizerLoader fused_optim = FusedOptimizerLoader().load() self.fused_adam = fused_optim.multi_tensor_adam self.dummy_overflow_buf = torch.cuda.IntTensor([0]) def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor): multi_tensor_applier( self.fused_adam, self.dummy_overflow_buf, [[grad], [param], [exp_avg], [exp_avg_sq]], self.lr, self.beta1, self.beta2, self.eps, step, self.use_adamw, True, self.weight_decay, -1, ) class CPUAdamKernel(AdamKernel): def __init__(self, lr: float, beta1: float, beta2: float, eps: float, weight_decay: float, use_adamw: bool) -> None: super().__init__(lr, beta1, beta2, eps, weight_decay, use_adamw) from colossalai.kernel.kernel_loader import CPUAdamLoader cpu_optim = CPUAdamLoader().load() self.cpu_adam_op = cpu_optim.CPUAdamOptimizer(lr, beta1, beta2, eps, weight_decay, use_adamw) def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor): self.cpu_adam_op.step( step, self.lr, self.beta1, self.beta2, self.eps, self.weight_decay, True, param.view(-1), grad.view(-1), exp_avg.view(-1), exp_avg_sq.view(-1), -1, ) def check_adam_kernel( kernel: Type[AdamKernel], adamw: bool, weight_decay: float, p_dtype: torch.dtype, g_dtype: torch.dtype, device: torch.device, n_steps: int, rtol: float, atol: float, ): lr = 1e-3 beta1, beta2 = 0.9, 0.999 eps = 1e-8 torch_adam = TorchAdamKernel(lr, beta1, beta2, eps, weight_decay, adamw) adam_kernel = kernel(lr, beta1, beta2, eps, weight_decay, adamw) master_p = torch.rand(64, device=device) master_g = torch.rand_like(master_p) master_exp_avg = torch.zeros_like(master_p) master_exp_avg_sq = torch.zeros_like(master_p) p = master_p.clone().to(p_dtype) g = master_g.clone().to(g_dtype) exp_avg = master_exp_avg.clone().to(p_dtype) exp_avg_sq = master_exp_avg_sq.clone().to(p_dtype) for step in range(1, 1 + n_steps): torch_adam.update(step, master_p, master_g, master_exp_avg, master_exp_avg_sq) adam_kernel.update(step, p, g, exp_avg, exp_avg_sq) # if overflow, the weight won't be updated. so there will be no nan in p assert not torch.isnan(p).any() assert torch.allclose(master_p, p.float(), rtol=rtol, atol=atol) @pytest.mark.parametrize("adamw", [False, True]) @pytest.mark.parametrize("weight_decay", [0.0, 0.1]) @pytest.mark.parametrize("p_dtype, g_dtype", _FUSED_ALLOWED_P_G_TYPES) def test_fused_adam_kernel(adamw, weight_decay, p_dtype, g_dtype): rtol, atol = 1e-5, 1e-8 if p_dtype is torch.float16 or g_dtype is torch.float16: rtol, atol = 1e-3, 1e-3 if p_dtype is torch.bfloat16 or g_dtype is torch.bfloat16: rtol, atol = 4e-3, 4e-3 check_adam_kernel( FusedAdamKernel, adamw, weight_decay, p_dtype, g_dtype, get_accelerator().get_current_device(), 3, rtol, atol ) @pytest.mark.parametrize("adamw", [False, True]) @pytest.mark.parametrize("weight_decay", [0.0, 0.1]) @pytest.mark.parametrize("p_dtype, g_dtype", _CPU_ALLOWED_P_G_TYPES) def test_cpu_adam_kernel(adamw, weight_decay, p_dtype, g_dtype): rtol, atol = 1e-5, 1e-8 if p_dtype is torch.float16 or g_dtype is torch.float16: rtol, atol = 1e-3, 1e-3 check_adam_kernel(CPUAdamKernel, adamw, weight_decay, p_dtype, g_dtype, torch.device("cpu"), 3, rtol, atol)