import torch import transformers from transformers import MistralConfig from ..registry import ModelAttribute, model_zoo # =============================== # Register single-sentence Mistral # =============================== def data_gen(): # Generated from following code snippet # # from transformers import AutoModelForCausalLM, AutoTokenizer # tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") # input = 'My favourite condiment is vinegar' (last two words repeated to satisfy length requirement) # tokenized_input = tokenizer([input], return_tensors="pt") # input_ids = tokenized_input['input_ids'] # attention_mask = tokenized_input['attention_mask'] input_ids = torch.tensor([[1, 1984, 16020, 2076, 2487, 349, 21375, 4749]], dtype=torch.int64) attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) return dict(input_ids=input_ids, attention_mask=attention_mask) def data_gen_for_lm(): # LM data gen # the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` data = data_gen() data["labels"] = data["input_ids"].clone() return data def data_gen_for_sequence_classification(): # sequence classification data gen data = data_gen() data["labels"] = torch.tensor([1], dtype=torch.int64) return data # define output transform function output_transform_fn = lambda x: x # define loss function loss_fn_for_mistral_model = lambda x: torch.nn.functional.mse_loss( x.last_hidden_state, torch.ones_like(x.last_hidden_state) ) loss_fn = lambda x: x.loss loss_fn_for_seq_classification = lambda output: output.logits.mean() config = MistralConfig( hidden_size=256, intermediate_size=256, num_attention_heads=64, num_hidden_layers=2, vocab_size=50258 ) model_zoo.register( name="transformers_mistral", model_fn=lambda: transformers.MistralModel(config), data_gen_fn=data_gen, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_mistral_model, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_mistral_for_casual_lm", model_fn=lambda: transformers.MistralForCausalLM(config), data_gen_fn=data_gen_for_lm, output_transform_fn=output_transform_fn, loss_fn=loss_fn, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_mistral_for_sequence_classification", model_fn=lambda: transformers.MistralForSequenceClassification(config), data_gen_fn=data_gen_for_sequence_classification, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_seq_classification, model_attribute=ModelAttribute(has_control_flow=True), )