import torch import torch.nn as nn import torch.nn.functional as F from ..registry import model_zoo from .base import CheckpointModule class NetWithRepeatedlyComputedLayers(CheckpointModule): """ This model is to test with layers which go through forward pass multiple times. In this model, the fc1 and fc2 call forward twice """ def __init__(self, checkpoint=False) -> None: super().__init__(checkpoint=checkpoint) self.fc1 = nn.Linear(5, 5) self.fc2 = nn.Linear(5, 5) self.fc3 = nn.Linear(5, 2) self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3] def forward(self, x): for layer in self.layers: x = layer(x) return x def data_gen(): return dict(x=torch.rand(16, 5)) def loss_fn(x): outputs = x["x"] label = torch.randint(low=0, high=2, size=(16,), device=outputs.device) return F.cross_entropy(x["x"], label) def output_transform(x: torch.Tensor): return dict(x=x) model_zoo.register( name="custom_repeated_computed_layers", model_fn=NetWithRepeatedlyComputedLayers, data_gen_fn=data_gen, output_transform_fn=output_transform, loss_fn=loss_fn, )