# Multi-dimensional Parallelism with Colossal-AI ## 🚀Quick Start 1. Install our model zoo. ```bash pip install titans ``` 2. Run with synthetic data which is of similar shape to CIFAR10 with the `-s` flag. ```bash colossalai run --nproc_per_node 4 train.py --config config.py -s ``` 3. Modify the config file to play with different types of tensor parallelism, for example, change tensor parallel size to be 4 and mode to be 2d and run on 8 GPUs. ## Install Titans Model Zoo ```bash pip install titans ``` ## Prepare Dataset We use CIFAR10 dataset in this example. You should invoke the `donwload_cifar10.py` in the tutorial root directory or directly run the `auto_parallel_with_resnet.py`. The dataset will be downloaded to `colossalai/examples/tutorials/data` by default. If you wish to use customized directory for the dataset. You can set the environment variable `DATA` via the following command. ```bash export DATA=/path/to/data ``` ## Run on 2*2 device mesh Current configuration setting on `config.py` is TP=2, PP=2. ```bash # train with cifar10 colossalai run --nproc_per_node 4 train.py --config config.py # train with synthetic data colossalai run --nproc_per_node 4 train.py --config config.py -s ```