from copy import deepcopy from typing import List import torch from torch.fx import symbolic_trace from torch.fx.node import Node from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( CommAction, CommType, OperationDataType, ShardingStrategy, ) from colossalai.auto_parallel.tensor_shard.solver.strategies_constructor import StrategiesConstructor from colossalai.device.device_mesh import DeviceMesh from colossalai.tensor.comm_spec import _all_reduce from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.tensor.sharding_spec import ShardingSpec shape_consistency_manager = ShapeConsistencyManager() def _solution_annotatation(gm: torch.fx.GraphModule, solution: List[int], strategies_constructor: StrategiesConstructor = None): """ This method is used to stick the solution strategy to the nodes and add the information required in runtime into graph as placeholder nodes. """ mod_graph = gm.graph # TODO: In future PR, strategies_constructor should be a required argument, # instead of optional argument. This is because we don't need to consider nodes with # no strategy in runtime preparation pass. if strategies_constructor is not None: nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies] no_strategy_nodes = strategies_constructor.no_strategy_nodes else: nodes = tuple(mod_graph.nodes) no_strategy_nodes = [] # the dict to get origin sharding spec of node origin_node_sharding_spec_dict = {} for node_index, (node, strategy_index) in enumerate(zip(nodes, solution)): strategies_vector = node.strategies_vector # stick the solution strategy to the corresponding node setattr(node, 'best_strategy', strategies_vector[strategy_index]) setattr(node, 'sharding_spec', strategies_vector[strategy_index].get_sharding_spec_by_name(str(node))) origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name( str(node)) # the dict to get input sharding specs of user node sharding_spec_convert_dict = {} # the dict to record comm actions of nodes comm_actions_dict = {} for index, node in enumerate(nodes): target_sharding_specs = [] for user_node in node.strategies_vector.successor_nodes: if user_node in no_strategy_nodes: target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(str(node.name)) else: target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name)) target_sharding_specs.append(target_sharding_spec) sharding_spec_convert_dict[index] = target_sharding_specs setattr(node, 'target_sharding_specs', target_sharding_specs) # the get_attr node strategy is kind of pending strategy, which means we will change it # to the same strategy of the user node. if node.op == 'get_attr': assert len(target_sharding_specs) == 1, f'sharing weight is not supported in current version.' new_sharding_spec = target_sharding_specs[0] user_strategy = node.strategies_vector.successor_nodes[0].best_strategy op_data_in_user = user_strategy.get_op_data_by_name(str(node)) origin_node_sharding_spec_dict[index] = new_sharding_spec origin_pending_strategy = node.best_strategy origin_op_data = origin_pending_strategy.get_op_data_by_name(str(node)) new_sharding_specs = origin_pending_strategy.sharding_specs new_sharding_specs[origin_op_data] = new_sharding_spec new_communication_actions = {} if op_data_in_user in user_strategy.communication_actions: new_communication_action = user_strategy.communication_actions.pop(op_data_in_user) new_communication_action.arg_index = 0 new_communication_actions[origin_op_data] = new_communication_action new_strategy = ShardingStrategy(name=str(new_sharding_spec.sharding_sequence), sharding_specs=new_sharding_specs, compute_cost=origin_pending_strategy.compute_cost, communication_cost=origin_pending_strategy.communication_cost, memory_cost=origin_pending_strategy.memory_cost, communication_actions=new_communication_actions) setattr(node, 'best_strategy', new_strategy) setattr(node, 'sharding_spec', new_sharding_spec) comm_action_dict = {} for op_data, comm_action in node.best_strategy.communication_actions.items(): comm_action_dict[op_data.name] = comm_action comm_actions_dict[index] = comm_action_dict # add above dicts into graph for node in nodes: if node.op != 'placeholder': with mod_graph.inserting_before(node): input_specs_node = mod_graph.create_node('placeholder', target='sharding_spec_convert_dict') origin_specs_node = mod_graph.create_node('placeholder', target='origin_node_sharding_spec_dict') comm_actions_dict_node = mod_graph.create_node('placeholder', target='comm_actions_dict') break return gm, sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict def _node_args_converting(gm: torch.fx.GraphModule, device_mesh: DeviceMesh): """ This pass will process node args to adapt the distributed tensor layout. """ mod_graph = gm.graph nodes = tuple(mod_graph.nodes) for node in nodes: # skip the placeholder node added in _solution_annotation pass if not hasattr(node, 'sharding_spec'): continue def _process_sharding_spec(sharding_spec): if isinstance(sharding_spec, ShardingSpec): dim_partition_dict = sharding_spec.dim_partition_dict device_mesh = sharding_spec.device_mesh return dim_partition_dict, device_mesh if sharding_spec is None: return None, None assert isinstance(sharding_spec, (tuple, list)), 'sharding_spec should be type of ShardingSpec, tuple, list or None' device_mesh = sharding_spec[0].device_mesh dim_partition_dict = [] for element in sharding_spec: dim_partition_dict.append(_process_sharding_spec(element)) return dim_partition_dict, sharding_spec output_dim_partition_dict, device_mesh = _process_sharding_spec(node.sharding_spec) new_args = [] if node.op == 'call_method': method = getattr(node.args[0]._meta_data.__class__, node.target) # process the node with (input, *shape) style args if method in (torch.Tensor.view, torch.Tensor.reshape): for arg in node.args: if isinstance(arg, Node): if isinstance(arg._meta_data, (int, tuple, list)): new_args.append(arg._meta_data) else: new_args.append(arg) else: assert isinstance( arg, (int, tuple, list)), 'The argument in view node should be either type of Node or int.' new_args.append(arg) for dim, shard_dims in output_dim_partition_dict.items(): total_shard_size = 1 for shard_dim in shard_dims: total_shard_size *= device_mesh.shape[shard_dim] # There are two ways to use torch.view: # 1. torch.view(input, *shape) # 2. torch.view(input, shape) if isinstance(new_args[1], int): new_args[dim + 1] //= total_shard_size else: new_args[1] = list(new_args[1]) new_args[1][dim] //= total_shard_size node.args = tuple(new_args) elif node.op == 'call_function': target = node.target # process the node with (input, torch.Size) style args if target in (torch.reshape,): for arg in node.args: if isinstance(arg, Node): if isinstance(arg._meta_data, (tuple, list)): new_args.append(list(arg._meta_data)) else: new_args.append(arg) else: assert isinstance( arg, (tuple, list)), 'The argument in reshape node should be either type of Node or tuple.' new_args.append(list(arg)) for dim, shard_dims in output_dim_partition_dict.items(): # we will skip the dim with -1 value if new_args[1][dim] == -1: continue total_shard_size = 1 for shard_dim in shard_dims: total_shard_size *= device_mesh.shape[shard_dim] new_args[1][dim] //= total_shard_size node.args = tuple(new_args) return gm def _module_params_sharding(gm: torch.fx.GraphModule, device_mesh: DeviceMesh): """ Apply the sharding action to the module parameters and buffers following the instructions of solver solution. """ mod_graph = gm.graph nodes = tuple(mod_graph.nodes) # This stream is created for overlaping the communication and computation. reduction_stream = torch.cuda.Stream() for node in nodes: if node.op == 'call_module': target_module = node.graph.owning_module.get_submodule(node.target) for name, param in target_module.named_parameters(): target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name) # apply the sharding spec of parameters if target_sharding_spec.dim_partition_dict != {}: origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {}) setattr(param, 'sharding_spec', origin_sharding_spec) # TODO: build a ColoParamter class to manager the distributed parameters # we could use .data here, because all the operations just happen before the real training # loop, so we don't need to track these operations in the autograd graph. param.data = shape_consistency_manager.apply_for_autoparallel_runtime( param.data, param.sharding_spec, target_sharding_spec).detach().clone() setattr(target_module, name, param) comm_actions = node.best_strategy.communication_actions for operation_data, comm_action in comm_actions.items(): comm_spec_to_use = comm_action.comm_spec # register hook to the parameters if operation_data.type == OperationDataType.PARAM and operation_data.name == name and comm_action.comm_type == CommType.HOOK: def wrapper(param, comm_spec): def hook_fn(grad): _all_reduce(grad, comm_spec, async_op=False) param.register_hook(hook_fn) wrapper(param, comm_spec_to_use) sharded_buffer_dict = {} # apply the sharding spec of buffers for name, buffer in target_module.named_buffers(): origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {}) setattr(buffer, 'sharding_spec', origin_sharding_spec) target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name) buffer_sharded = shape_consistency_manager.apply(buffer, target_sharding_spec) sharded_buffer_dict[name] = buffer_sharded for name, buffer_sharded in sharded_buffer_dict.items(): setattr(target_module, name, buffer_sharded.detach().clone()) if node.op == 'get_attr': root = node.graph.owning_module atoms = node.target.split(".") attr_len = len(atoms) if attr_len == 1: target_module = root target = getattr(root, atoms[0]) else: target_module = root.get_submodule(atoms[-2]) target = getattr(target_module, atoms[-1]) target_sharding_spec = node.sharding_spec if target_sharding_spec.dim_partition_dict != {}: origin_sharding_spec = ShardingSpec(device_mesh, target.shape, {}) setattr(target, 'sharding_spec', origin_sharding_spec) # TODO: build a ColoParamter class to manager the distributed parameters # we could use .data here, because all the operations just happen before the real training # loop, so we don't need to track these operations in the autograd graph. target.data = shape_consistency_manager.apply_for_autoparallel_runtime( target.data, target.sharding_spec, target_sharding_spec).detach().clone() assert hasattr(target_module, atoms[-1]) setattr(target_module, atoms[-1], target) comm_actions = node.best_strategy.communication_actions for operation_data, comm_action in comm_actions.items(): comm_spec_to_use = comm_action.comm_spec # register hook to the parameters if isinstance(node._meta_data, torch.nn.parameter.Parameter) and comm_action.comm_type == CommType.HOOK: def wrapper(param, comm_spec): def hook_fn(grad): _all_reduce(grad, comm_spec, async_op=False) param.register_hook(hook_fn) wrapper(target, comm_spec_to_use) return gm def implicit_comm_action_apply(gm: torch.fx.GraphModule): """ replace the origin kernel into kernel with implicit communication inside. """ pass def runtime_preparation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh: DeviceMesh, strategies_constructor: StrategiesConstructor = None): gm, sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict = _solution_annotatation( gm, solution, strategies_constructor) gm = _node_args_converting(gm, device_mesh) # TODO: the pass below should be uncommented after the implementation of implicit_comm_action_apply_pass completed. # gm = implicit_comm_action_apply(gm) gm = _module_params_sharding(gm, device_mesh) return gm, sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict