import colossalai import colossalai.nn as col_nn import torch import torch.distributed as dist import torch.multiprocessing as mp import pytest from colossalai.core import global_context as gpc from colossalai.context import ParallelMode from functools import partial CONFIG = dict( parallel=dict( tensor=dict(size=4, mode='sequence') ) ) def check_ring_qk(rank, world_size): # params batch_size = 4 num_heads = 4 seq_length = 32 attention_head_size = 32 sub_seq_length = seq_length // world_size # create master tensors q = torch.rand(batch_size*num_heads, seq_length, attention_head_size).cuda() k = torch.rand(batch_size*num_heads, seq_length, attention_head_size).cuda() dist.broadcast(q, src=0, group=gpc.get_group(ParallelMode.SEQUENCE)) dist.broadcast(k, src=0, group=gpc.get_group(ParallelMode.SEQUENCE)) # create distributed tensors sub_q = q.clone()[:, rank*sub_seq_length:(rank+1)*sub_seq_length].contiguous() sub_k = k.clone()[:, rank*sub_seq_length:(rank+1)*sub_seq_length].contiguous() # set autograd attributes q.requires_grad = True k.requires_grad = True q.retain_grad() k.retain_grad() sub_q.requires_grad = True sub_k.requires_grad = True sub_q.retain_grad() sub_k.retain_grad() # compute master attention scores a = torch.matmul(q, k.transpose(2, 1)) # compute distributed attention scores ring_qk = colossalai.nn.layer.parallel_sequence.RingQK.apply sub_a = ring_qk(sub_q, sub_k, batch_size, num_heads, sub_seq_length) # check master and distributed attetion scores sub_master_a = a[:, rank*sub_seq_length:(rank+1)*sub_seq_length] assert torch.allclose(sub_a, sub_master_a, rtol=1e-5, atol=1e-2) # run master backward a.retain_grad() a.mean().backward() # run distributed backward partial_master_a_grad = a.grad[:, rank*sub_seq_length:(rank+1)*sub_seq_length] torch.autograd.backward(sub_a, partial_master_a_grad) # check master and distributed grads partial_master_q_grad = q.grad[:, rank*sub_seq_length:(rank+1)*sub_seq_length] assert torch.allclose(sub_q.grad, partial_master_q_grad, rtol=1e-5, atol=1e-2), \ 'attention score cannot match' def check_ring_av(rank, world_size): # params batch_size = 4 num_heads = 4 seq_length = 16 attention_head_size = 32 sub_seq_length = seq_length // world_size # create master tensors a = torch.rand(batch_size*num_heads, seq_length, seq_length).cuda() v = torch.rand(batch_size*num_heads, seq_length, attention_head_size).cuda() dist.broadcast(a, src=0, group=gpc.get_group(ParallelMode.SEQUENCE)) dist.broadcast(v, src=0, group=gpc.get_group(ParallelMode.SEQUENCE)) # create distributed tensors sub_a = a.clone()[:, rank*sub_seq_length:(rank+1)*sub_seq_length].contiguous() sub_v = v.clone()[:, rank*sub_seq_length:(rank+1)*sub_seq_length].contiguous() # set autograd attributes a.requires_grad = True v.requires_grad = True a.retain_grad() v.retain_grad() sub_a.requires_grad = True sub_v.requires_grad = True sub_a.retain_grad() sub_v.retain_grad() # compute master attention scores out = torch.matmul(a, v) # compute distributed attention scores ring_av = colossalai.nn.layer.parallel_sequence.RingAV.apply sub_out = ring_av(sub_a, sub_v, batch_size, num_heads, attention_head_size, sub_seq_length) # print(f'master output shape: {out.shape}, partial output shape: {sub_out.shape}') # check master and distributed output sub_master_out = out[:, rank*sub_seq_length:(rank+1)*sub_seq_length] assert torch.allclose(sub_out, sub_master_out, rtol=1e-5, atol=1e-2) # # run master backward out.retain_grad() out.mean().backward() # # run distributed backward partial_master_out_grad = out.grad[:, rank*sub_seq_length:(rank+1)*sub_seq_length] torch.autograd.backward(sub_out, partial_master_out_grad) # # check master and distributed grads partial_master_a_grad = a.grad[:, rank*sub_seq_length:(rank+1)*sub_seq_length] assert torch.allclose(sub_a.grad, partial_master_a_grad, rtol=1e-5, atol=1e-2), \ 'attention output cannot match' def run_test(rank, world_size): colossalai.launch( rank=rank, world_size=world_size, config=CONFIG, host='localhost', port=29500 ) # check_ring_qk(rank, world_size) check_ring_av(rank, world_size) gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist def test_sequence(): world_size = 4 run_func = partial(run_test, world_size=world_size) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_sequence()