import os from functools import partial from tempfile import TemporaryDirectory from typing import Dict import pytest import torch import torch.distributed as dist import torch.nn as nn from torch import Tensor from torch.optim import Adam import colossalai from colossalai.testing import rerun_if_address_is_in_use, spawn from colossalai.utils.checkpoint_io.constant import ( GLOBAL_META_FILE_NAME, META_CKPT_FILE_NAME, MODEL_CKPT_FILE_NAME, OTHER_CKPT_FILE_NAME, ) from colossalai.utils.checkpoint_io.io import save from colossalai.utils.checkpoint_io.meta import ParamDistMeta def check_model_state_dict(a: Dict[str, Tensor], b: Dict[str, Tensor]) -> None: assert set(a.keys()) == set(b.keys()) for k, v in a.items(): assert torch.equal(v, b[k]) def check_optim_state_dict(a: dict, b: dict, ignore_param_groups: bool = False) -> None: assert set(a['state'].keys()) == set(b['state'].keys()) for k, state in a['state'].items(): b_state = b['state'][k] for v1, v2 in zip(state.values(), b_state.values()): if isinstance(v1, Tensor): assert torch.equal(v1, v2) else: assert v1 == v2 if not ignore_param_groups: assert a['param_groups'] == b['param_groups'] class DummyModel(nn.Module): def __init__(self) -> None: super().__init__() self.fc = nn.Linear(20, 1) def prepare_model_optim(): model = DummyModel() for p in model.parameters(): p.grad = torch.ones_like(p) optimizer = Adam(model.parameters(), lr=1e-3) optimizer.step() return model, optimizer def test_overwrite(): model = DummyModel() with TemporaryDirectory() as dir_name: with open(os.path.join(dir_name, MODEL_CKPT_FILE_NAME.replace('.bin', '-shard0.bin')), 'a') as f: pass with pytest.raises(RuntimeError, match=r'Save error: Checkpoint ".+" exists\. \(overwrite = False\)'): save(dir_name, model) def test_save_global(): model, optimizer = prepare_model_optim() with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer) assert len(os.listdir(dir_name)) == 5 global_meta = torch.load(os.path.join(dir_name, GLOBAL_META_FILE_NAME)) assert len(global_meta['meta']) == 1 and global_meta['meta'][0] == META_CKPT_FILE_NAME meta = torch.load(os.path.join(dir_name, META_CKPT_FILE_NAME)) assert len(meta['model']) == 1 assert len(meta['optimizer']) == 1 model_state_dict = torch.load(os.path.join(dir_name, meta['model'][0])) check_model_state_dict(model.state_dict(), model_state_dict) optimizer_state_dict = torch.load(os.path.join(dir_name, meta['optimizer'][0])) check_optim_state_dict(optimizer.state_dict(), optimizer_state_dict) other_state_dict = torch.load(os.path.join(dir_name, OTHER_CKPT_FILE_NAME)) assert len(other_state_dict) == 0 def test_save_global_shard(): model, optimizer = prepare_model_optim() with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer, max_shard_size_gb=80 / 1024**3) assert len(os.listdir(dir_name)) == 7 meta = torch.load(os.path.join(dir_name, META_CKPT_FILE_NAME)) assert len(meta['model']) == 2 and len(meta['optimizer']) == 2 model_state_dicts = [torch.load(os.path.join(dir_name, name)) for name in meta['model']] assert len(set(model_state_dicts[0].keys()) & set(model_state_dicts[1].keys())) == 0 check_model_state_dict(model.state_dict(), {**model_state_dicts[0], **model_state_dicts[1]}) optimizer_state_dicts = [torch.load(os.path.join(dir_name, name)) for name in meta['optimizer']] assert len(set(optimizer_state_dicts[0]['state'].keys()) & set(optimizer_state_dicts[1]['state'].keys())) == 0 assert 'param_groups' in optimizer_state_dicts[0] and 'param_groups' not in optimizer_state_dicts[1] check_optim_state_dict( optimizer.state_dict(), { 'state': { **optimizer_state_dicts[0]['state'], **optimizer_state_dicts[1]['state'] }, 'param_groups': optimizer_state_dicts[0]['param_groups'] }) def run_dist(rank, world_size, port, test_fn): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') test_fn() def run_save_dist(dir_name): model, optimizer = prepare_model_optim() dist_metas = { 'fc.weight': ParamDistMeta(dist.get_rank(), dist.get_world_size(), 0, 1), 'fc.bias': ParamDistMeta(dist.get_rank(), dist.get_world_size(), 0, 1) } save(dir_name, model, optimizer, dist_meta=dist_metas) @pytest.mark.dist @rerun_if_address_is_in_use() def test_save_dist(): with TemporaryDirectory() as dir_name: fn = partial(run_save_dist, dir_name) world_size = 2 spawn(run_dist, world_size, test_fn=fn) assert len(os.listdir(dir_name)) == 8 global_meta = torch.load(os.path.join(dir_name, GLOBAL_META_FILE_NAME)) assert len(global_meta['meta']) == 2 for rank, meta_name in enumerate(global_meta['meta']): meta = torch.load(os.path.join(dir_name, meta_name)) assert meta.get('dist_meta', None) is not None assert len(meta['model']) == 1 and len(meta['optimizer']) == 1 model_state_dict = torch.load(os.path.join(dir_name, meta['model'][0])) assert len(model_state_dict) == 2 optimizer_state_dict = torch.load(os.path.join(dir_name, meta['optimizer'][0])) assert len(optimizer_state_dict['state']) == 2 assert 'param_groups' in optimizer_state_dict if __name__ == '__main__': test_overwrite() test_save_global() test_save_global_shard() test_save_dist()