import functools from colossalai.utils.cuda import get_current_device import torch from colossalai.zero.shard_utils import BaseShardStrategy from colossalai.zero.sharded_param import ShardedParamV2 # Inserts _post_init_method at the end of init method # for all sub classes of torch.nn.Module class InsertPostInitMethodToModuleSubClasses(object): def __init__(self): pass def __enter__(self): r""" Enter the context scope. """ def preprocess_after(f): @functools.wraps(f) def wrapper(module: torch.nn.Module, *args, **kwargs): f(module, *args, **kwargs) self._post_init_method(module) return wrapper def _enable_class(cls): cls._old_init = cls.__init__ cls.__init__ = preprocess_after(cls.__init__) # The function is called during init subclass. def _init_subclass(cls, **kwargs): cls.__init__ = preprocess_after(cls.__init__) # Replace .__init__() for all existing subclasses of torch.nn.Module # Excution self._post_init_method after the default init function. for subclass in torch.nn.modules.module.Module.__subclasses__(): _enable_class(subclass) # holding on to the current __init__subclass__ for exit torch.nn.modules.module.Module._old_init_subclass = (torch.nn.modules.module.Module.__init_subclass__) # Replace .__init__() for future subclasses of torch.nn.Module torch.nn.modules.module.Module.__init_subclass__ = classmethod(_init_subclass) self._pre_context_exec() def __exit__(self, exc_type, exc_value, traceback): def _disable_class(cls): cls.__init__ = cls._old_init # Replace .__init__() for all existing subclasses of torch.nn.Module for subclass in torch.nn.modules.module.Module.__subclasses__(): _disable_class(subclass) # Replace .__init__() for future subclasses of torch.nn.Module torch.nn.modules.module.Module.__init_subclass__ = (torch.nn.modules.module.Module._old_init_subclass) self._post_context_exec() # Now that we cleaned up the metaclass injection, raise the exception. if exc_type is not None: return False # To be implemented by inheriting classes def _post_init_method(self, module): pass def _pre_context_exec(self): pass def _post_context_exec(self): pass class ZeroInitContext(InsertPostInitMethodToModuleSubClasses): """ A context to initialize model. 1. Convert the model to fp16. 2. The paramaters of the module are adapted to type ShardedParameter. 3. Shard the param and grad according to flags. """ def __init__( self, convert_fp16: bool, convert_cuda: bool, shard_strategy: BaseShardStrategy, shard_param: bool = False, shard_grad: bool = False, ): super().__init__() self.convert_fp16 = convert_fp16 self.convert_cuda = convert_cuda self.shard_param = shard_param self.shard_grad = shard_grad self.shard_strategy = shard_strategy def _post_context_exec(self): """The callback function when the context exits. """ pass def _post_init_method(self, module): r"""The function to call at the end of the constructor of each nn.Module. """ for param in module.parameters(): # avoid adapting a param to ShardedParam twice if hasattr(param, 'ca_attr'): continue if self.convert_cuda: target_device = get_current_device() else: target_device = param.data.device # convert to fp16 and cuda if necessary if self.convert_fp16: param.data = param.data.to(torch.half).to(target_device) if param.grad is not None: param.grad = param.grad.to(torch.half).to(target_device) param.ca_attr = ShardedParamV2(param) if self.shard_param: self.shard_strategy.shard(tensor_list=[param.ca_attr._data_sharded_tensor]) if param.ca_attr.grad and self.shard_grad: self.shard_strategy.shard(tensor_list=[param.ca_attr._grad_sharded_tensor])