#!/usr/bin/env python # -*- encoding: utf-8 -*- import pytest import torch from common import CONFIG import colossalai from colossalai.logging import get_dist_logger from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils.cuda import get_current_device from colossalai.utils.memory import colo_device_memory_used from colossalai.zero.gemini.memory_tracer.utils import colo_model_mem_usage from colossalai.zero.legacy.init_ctx import ZeroInitContext from colossalai.zero.legacy.shard_utils import BucketTensorShardStrategy, TensorShardStrategy from tests.components_to_test.registry import non_distributed_component_funcs @parameterize("init_device_type", ['cpu', 'cuda']) @parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) def run_model_test(init_device_type, shard_strategy_class): logger = get_dist_logger("test_zero_init") for name, get_components_func in non_distributed_component_funcs._registry.items(): # because the ZeroInitContext automatically turns parameters to fp16 # and the beit model use tensor.erfinv_() function to initialize weights # tensor.erfinv_() doesn't support Half in CPU, we omit the beit model if name == 'beit': continue model_builder, _, _, _, _ = get_components_func() if init_device_type == 'cuda': init_device = get_current_device() elif init_device_type == 'cpu': init_device = torch.device("cpu") else: continue model_numel_tensor = torch.zeros(1, dtype=torch.int) with ZeroInitContext(target_device=init_device, shard_strategy=shard_strategy_class(), shard_param=True, model_numel_tensor=model_numel_tensor): model = model_builder(checkpoint=True) for param in model.parameters(): assert hasattr(param, 'colo_attr') assert param.colo_attr.sharded_data_tensor.dtype == torch.half assert param.colo_attr.sharded_data_tensor.is_sharded assert param.colo_attr.data_payload.device.type == init_device.type, \ f'{param.colo_attr.data_payload.device.type} vs. {init_device.type}' cuda_mem_use, _ = colo_model_mem_usage(model) model_data_cuda_mem_MB = cuda_mem_use / 1e6 logger.info(f"Existing ZeRO Context.\nModel Data CUDA Memory {model_data_cuda_mem_MB} MB", ranks=[0]) sys_cuda_mem_MB = colo_device_memory_used(get_current_device()) / 1e6 logger.info(f"System CUDA Memory Usage {sys_cuda_mem_MB} MB", ranks=[0]) logger.info(f"Model Number Parameter {model_numel_tensor.numpy()[0]/1e6} M", ranks=[0]) def run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_model_test() @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 4]) @rerun_if_address_is_in_use() def test_zero_init_context(world_size): spawn(run_dist, world_size) if __name__ == '__main__': test_zero_init_context(1)